Discrete-time trawl processes

Paul Doukhan ${ }^{\text {a,* }}$, Adam Jakubowski ${ }^{\text {b }}$, Silvia R. C. Lopes ${ }^{\text {c }}$, Donatas Surgailis ${ }^{\text {d }}$
${ }^{a}$ Université de Cergy-Pontoise, UMR AGM8088, 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise CEDEX, France
${ }^{b}$ Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, ul. Chopina 12/18, 87-100 Toruń, Poland
${ }^{c}$ Federal University of Rio Grande do Sul, Mathematics Institute, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brasil
${ }^{d}$ Vilnius University, Faculty of Mathematics and Informatics, Naugarduko 24, 03225 Vilnius, Lithuania

Abstract

We introduce a class of discrete time stationary trawl processes taking real or integer values and written as sums of past values of independent 'seed' processes on shrinking intervals ('trawl heights'). Related trawl processes in continuous time were studied in Barndorff-Nielsen et al. (2011, 2012).

In the case when the trawl function decays as a power function of the lag with exponent $1<\alpha<2$, the trawl process exhibits long memory and its covariance function is non-summable. We show that under general conditions on generic seed process, the normalized partial sums of such trawl process may tend either to a fractional Brownian motion or to an α-stable Lévy process. Moreover if the trawl function admits a faster decay rate, then the classical Donsker's invariance principle holds true.

Keywords: trawl process, integer-valued time series, long memory, distributional short-range dependence, fractional Brownian motion, stable Lévy process, functional convergence, Skorokhod's M_{1} topology 2010 MSC: 60K99, 60G22, 60G52, 60F17

1. Introduction

The present paper introduces a class of stationary random processes of the form

$$
\begin{equation*}
X_{k}=\sum_{j=0}^{\infty} \gamma_{k-j}\left(a_{j}\right), \quad k \in \mathbb{Z} \tag{1.1}
\end{equation*}
$$

[^0]4 where $\gamma_{k}=\left\{\gamma_{k}(u), u \in \mathbb{R}\right\}$, for $k \in \mathbb{Z}$, are i.i.d. copies of a generic process $\gamma=\{\gamma(u), u \in \mathbb{R}\}$ tending to zero in probability as $u \rightarrow 0$, and $a_{j}, j \geq 0$ is
6 a sequence of real numbers satisfying $\lim _{j \rightarrow \infty} a_{j}=0$. Throughout this paper, we use standard notation $\mathbb{N}=\{0,1, \ldots\}, \mathbb{Z}=\{0, \pm 1, \ldots\}, \mathbb{R}=(-\infty, \infty)$,
$8 \mathbb{R}_{+}=[0, \infty), u \wedge v=\min \{u, v\}$. Clearly, 1.1) includes the class of causal moving averages $X_{k}=\sum_{j=0}^{\infty} a_{j} \xi_{k-j}$ in i.i.d. r.v.s $\left\{\xi_{k}, k \in \mathbb{Z}\right\}$, which correspond to a random line seed process $\gamma=\left\{\gamma(u)=\xi_{0} u, u \in \mathbb{R}\right\}$.

In the sequel we call $X=\left\{X_{k}, k \in \mathbb{Z}\right\}$ in 1.1 the trawl process correspond12 ing to a seed process $\gamma=\{\gamma(u), u \in \mathbb{R}\}$ and a trawl (function) $a=\left\{a_{j}, j \geq 0\right\}$. The above terminology is borrowed from Barndorff-Nielsen et al. [3], where a related class of trawl processes in continuous time was introduced. To be more specific, [3] consider stochastic integrals

$$
\begin{equation*}
Y_{t}=\int_{\mathbb{R} \times(-\infty, t]} \mathbb{1}\left(x \in\left(0, d_{t-s}\right)\right) L(\mathrm{~d} x, \mathrm{~d} s), \quad t \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

where $L(\mathrm{~d} x, \mathrm{~d} s)$ is a homogeneous Lévy basis on \mathbb{R}^{2} and $\left\{d_{t}, t \in \mathbb{R}_{+}\right\}$is a deterministic function satisfying certain conditions. In the case when this function takes constant values on intervals $t \in(j, j+1]$, for $j=0,1, \ldots$, the discretized process $\left\{Y_{k}, k \in \mathbb{Z}\right\}$ in 1.2 coincides with $\left\{X_{k}, k \in \mathbb{Z}\right\}$ in 1.1 corresponding to the independent increment (Lévy) seed process and to the trawl function

$$
\left\{\gamma(u)=\int_{(0, u] \times(0,1]} L(\mathrm{~d} x, \mathrm{~d} s), u \in \mathbb{R}\right\}, \quad\left\{a_{j}=d_{t}, t \in(j, j+1], j \geq 0\right\}
$$ time trawl processes of (1.2) studied in [3]. On the other hand, the discrete-time set-up allows us to consider very general seed processes γ which need not be infinitely divisible or have independent increments as in the aforementioned work.

Barndorff-Nielsen et al. ([2], p. 22) note that trawl processes represent a flexible class of stochastic processes which can be used to model serially dependent
24 count data and other stationary time series, where the marginal distribution and the autocorrelation structure can be modelled independently from each other. In particular, trawl processes can exhibit long memory or long-range dependence, which is usually associated with divergence of covariance series: $\sum_{k \in \mathbb{Z}}\left|\operatorname{Cov}\left(X_{0}, X_{k}\right)\right|=\infty$, see [11], and which occurs in models 1.1) and 1.2) when the trawl function decays sufficiently slowly with the lag, see [3] and Secinterer trawl process given $\sqrt{1.2}$ with $d_{t}=(1-t)^{-1.03}$ exibiting
remarkly slow 1000.

The main question studied in this paper, which is also one of the basic questions for statistical applications of trawl processes, is the rate of convergence

2. Discrete-time trawl process

2.1. Existence of discrete-time trawl process

Let $\gamma_{k}=\left\{\gamma_{k}(u), u \in \mathbb{R}\right\}, k \in \mathbb{Z}$ be i.i.d. copies of a (generic) seed process $\gamma=\{\gamma(u), u \in \mathbb{R}\}$ with finite variance $\rho(u)=\operatorname{Var}(\gamma(u))$ and mean
$\mu(u)=\mathbb{E} \gamma(u)$. A trawl $a=\left\{a_{j}, j \geq 0\right\}$ is a deterministic sequence such that
78 $\lim _{j \rightarrow \infty} a_{j}=0$. We shall assume that

$$
\begin{equation*}
\mathbb{E} \gamma(u)=O(\operatorname{Var}(\gamma(u))) \rightarrow 0, \quad u \rightarrow 0 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{\infty} \operatorname{Var}\left(\gamma\left(a_{j}\right)\right)<\infty \tag{2.4}
\end{equation*}
$$

80 The trawl process $X=\left\{X_{k}, k \in \mathbb{Z}\right\}$ corresponding to trawl $a=\left\{a_{j}, j \geq 0\right\}$ and seed process $\gamma=\{\gamma(u), u \in \mathbb{R}\}$ is defined in (1.1).
32 Let

$$
\begin{equation*}
\rho(u, v)=\operatorname{Cov}(\gamma(u), \gamma(v)), \quad \rho(u)=\rho(u, u), \quad u, v \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

denote the covariance and the variance of the seed process.

86

88 examples show that the class of trawl processes is very large.
${ }_{94}$ Example 1 (Random line seed process). Let $\gamma(u)=\xi u, u \in \mathbb{R}$, where ξ is a r.v. with zero mean and variance $\sigma^{2}<\infty$. Then $\mu(u)=0, \rho(u)=\sigma^{2} u^{2}$, condition
${ }_{96}\left(2.3\right.$ holds trivially and condition (2.4) translates to $\sum_{j=0}^{\infty} a_{j}^{2}<\infty$. Then X in (1.1) is a moving-average:

$$
\begin{equation*}
X_{k}=\sum_{j=0}^{\infty} a_{j} \xi_{k-j} \tag{2.7}
\end{equation*}
$$

${ }_{98}$ where $\left\{\xi_{k}, k \in \mathbb{Z}\right\}$ are i.i.d. copies of ξ.
Example 2 (Brownian motion seed process). Let $a_{j} \geq 0$ and $\gamma(u)=B(u), u \geq$ $u \wedge v$. Then (2.3) is trivially satisfied while (2.4) becomes $\sum_{j=0}^{\infty} a_{j}<\infty$. Then

Example 3 (Poisson and mixed Poisson seed processes). Let $\gamma(u)=P(u)$, $u \in \mathbb{R}_{+}$, where P is a Poisson process with mean $\mu(u)=u$, covariance $\rho(u, v)=$ $\operatorname{Cov}(P(u), P(v))=u \wedge v$ and $a_{j} \geq 0, \sum_{j=0}^{\infty} a_{j}<\infty$. Then (2.3) and (2.4) are satisfied since $\mu(u)=\rho(u)$ and X in 1.1 is a stationary process with mean $\mathbb{E} X_{k}=\sum_{j=0}^{\infty} a_{j}$ and the same covariance as in Example 2 . Moreover, X_{k} takes integer values and has a Poisson marginal distribution with mean $\mathbb{E} X_{0}$.
The above example can be generalized by considering a mixed Poisson seed process $\gamma(u)=P(u \zeta)$, where P is as above and $\zeta \geq 0$ is a random variable with $\mathbb{E} \zeta<\infty$, independent of P. Particularly, 5 proved that when ζ is exponentially distributed then $P(u \zeta)$ has negative binomial marginal distribution. The case of binary r.v. $\zeta \in\{0,1\}$ corresponds to the so-called zero-inflated Poisson process, see [19]. Note that for $\gamma(u)=P(u \zeta)$

$$
\mu(u)=u \mathbb{E} \zeta \quad \text { and } \quad \rho(u, v)=(u \wedge v) \mathbb{E} \zeta+u v \operatorname{Var}(\zeta)
$$

Example 4 (Bernoulli and binomial seed processes). The Bernoulli seed process is defined by $b(u)=\mathbb{1}(U \leq u)$, where $U \sim \mathcal{U}[0,1]$ is a uniformly distributed random variable. Thus, for $\gamma(u)=b(u)$

$$
\mu(u)=u, \quad \rho(u, v)=u \wedge v-u v
$$

The binomial seed $\gamma(u)=b(u ; n), u \geq 0$ is defined as the sum of n independent Bernoulli seeds: $b(u ; n)=\sum_{j=1}^{n} b_{j}(u)$, where $b_{j}(u)=\mathbb{1}\left(U_{j} \leq u\right), j=1, \ldots, n$ are independent Bernoulli processes. Clearly, $\mathbb{E} b(u ; n)=n u$ and $\rho(u, v)=$ $\operatorname{Cov}(b(u ; n), b(v ; n))=n(u \wedge v-u v)$.

Further examples of trawl processes can be found in Sections 2.2 (Example 5), 3.1 (Examples 6.7) and 3.2 (Example 8).

2.2. Second order properties of discrete-time trawl process

The variance $\operatorname{Var}\left(X_{k}\right)$ of trawl process X in (1.1) depends both on trawl $a=\left\{a_{j}\right\}$ and on covariance function $\rho(u, v)$ of seed process, see 2.6). In order to characterize the existence of X in terms of $a=\left\{a_{j}\right\}$ alone, it is convenient to impose a linear growth condition on the variance $\rho(u)=\operatorname{Var}(\gamma(u))$ at the origin $u=0$:

$$
\begin{equation*}
\rho(u)=O(|u|), \quad u \rightarrow 0 . \tag{2.8}
\end{equation*}
$$

Under (2.8), condition (2.4) is equivalent to summability of the trawl sequence: satisfied. Then by (2.6) and monotonicity of a_{j} we have that $\operatorname{Cov}\left(X_{0}, X_{k}\right)=$ $\sum_{j=k}^{\infty} a_{j}=r(k)$. $0<d<1 / 2$ is given by

$$
\begin{align*}
r(j) & =r(0) \prod_{k=1}^{j} \frac{k-1+d}{k-d}=\frac{\Gamma(j+d) \Gamma(1-2 d)}{\Gamma(j-d+1) \Gamma(d) \Gamma(1-d)} \\
& \sim \frac{\Gamma(1-2 d)}{\Gamma(d) \Gamma(1-d)} j^{-1+2 d}, \quad j \rightarrow \infty \tag{2.10}
\end{align*}
$$

$r(0)=\Gamma(1-2 d) / \Gamma^{2}(1-d)$, see e.g. (11, (7.2.9)). Then 2.10$)$ satisfies the conditions of Proposition $2, r(j)-r(j+1)=r(j)\left(1-\frac{j+d}{j+1-d}\right)=(1-$ $2 d) r(j) /(j+1-d)>0$ and $r(j)-2 r(j+1)+r(j+2)=2(1-d)(1-2 d) r(j) /(j+$ $1-d)(j+2-d)>0$, for $j \in \mathbb{N}$. Particularly, trawl process with Poisson seed process $\gamma(u)=P(u)$ in Example 3 and trawl $a_{j}=r(j)-r(j+1)$ defined by 2.10) presents an example of integer-valued process with Poisson marginal distribution and $\operatorname{ARFIMA}(0, d, 0)$ covariance function. Note that the above trawl decays as $j^{-2(1-d)}$ with the exponent $2(1-d) \in(1,2)$, viz.,

$$
a_{j}=r(j) \frac{1-2 d}{j+1-d} \sim \frac{\Gamma(2-2 d)}{\Gamma(d) \Gamma(1-d)} j^{-2+2 d}, \quad j \rightarrow \infty
$$

The following proposition obtains power-law decay of the covariance of the trawl
process and the asymptotics of the variance of S_{n} under general conditions on the trawl function and on the seed process. Contrary to Proposition 2 and Example 55 these conditions do not require monotonicity of a_{j}. Write $u_{n} \gg v_{n}$ for $\lim _{n \rightarrow \infty} u_{n} / v_{n}=\infty$.

Proposition 3. Consider the stationary trawl process $\left\{X_{k}\right\}$ in 1.1). Let conditions (2.3), (2.8) and (2.9) be satisfied.
(i) In addition, assume

$$
\begin{equation*}
\rho(u, v)=(|u| \wedge|v|)(1+o(1)), \quad \text { as } \quad u, v \rightarrow 0, u v>0 . \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{j}=c_{0} j^{-\alpha}(1+o(1)), \quad j \rightarrow \infty \quad\left(\exists 1<\alpha<2, c_{0} \neq 0\right) . \tag{2.12}
\end{equation*}
$$

(ii) In addition, assume

$$
\begin{equation*}
|\rho(u, v)| \leq C(|u| \wedge|v|), \quad u, v \in \mathbb{R} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{\infty} j\left|a_{j}\right|<\infty . \tag{2.16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\operatorname{Cov}\left(X_{0}, X_{k}\right)\right|<\infty \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(S_{n}\right)=n \sum_{|k|<n}\left(1-\left|\frac{k}{n}\right|\right) \operatorname{Cov}\left(X_{k}, X_{0}\right) \sim \sigma^{2} n, \tag{2.18}
\end{equation*}
$$

where $\sigma^{2}=\sum_{k \in \mathbb{Z}} \operatorname{Cov}\left(X_{0}, X_{k}\right)$.
Remark 1. (i) Note 2.11) and (2.12) imply (2.8) and 2.9), respectively. As noted above, the latter conditions together with (2.3) guarantee (2.4) and the existence of stationary trawl process (1.1) in Proposition 1.
(ii) In view of 2.13) and 2.10), the parameter $d=1-\alpha / 2 \in(0,1 / 2)$ in Proposition 3 (i) can be identified as the long memory parameter of the trawl process X. Statistical estimation of this parameter presents considerable interest. We plan to study this question in a future work.

Proof. (i) Without loss of generality, let $c_{0}>0$ in 2.12 ; the proof in the case $c_{0}<0$ is analogous. Then $a_{j}>0$, and $a_{k+j}>0$ hold for all $k \geq 1$ and $j>j_{0}$, where j_{0} is large enough. Moreover, for any $\epsilon>0$ there exists $j_{0}<j_{\epsilon}<\infty$ such that

$$
\begin{equation*}
a_{j+k}<a_{j}, \quad \text { for all } \quad j_{\epsilon}<j<k / 2 \epsilon, \text { and } k \geq 2 \epsilon j_{\epsilon} . \tag{2.19}
\end{equation*}
$$

Indeed, by 2.12 we have that for any $\epsilon>0$ there exists $j_{\epsilon}>j_{0}>0$ such that $a_{j}>c_{0} j^{-\alpha}(1-\epsilon), a_{k+j}<c_{0}(j+k)^{-\alpha}(1+\epsilon)$ and therefore

$$
\left(\frac{a_{j+k}}{a_{j}}\right)^{\frac{1}{\alpha}}<\frac{j}{j+k}\left(\frac{1+\epsilon}{1-\epsilon}\right)^{\frac{1}{\alpha}}, \quad \forall j>j_{\epsilon}, \quad \forall k \geq 1 .
$$

Since $((1+\epsilon) /(1-\epsilon))^{\frac{1}{\alpha}}<1+2 \epsilon$ if $\epsilon>0$ is small enough, relation 2.19 follows since $j /(j+k) \leq 1 /(1+2 \epsilon)$ for $1 \leq j<k / 2 \epsilon$.
Consider 2.13). For sufficiently large $k\left(k>2 \epsilon j_{\epsilon}\right)$ split $k^{\alpha-1} \operatorname{Cov}\left(X_{0}, X_{k}\right)=$ $\sum_{j=0}^{\infty} k^{\alpha-1} \rho\left(a_{j}, a_{k+j}\right)=\sum_{i=1}^{3} I_{i, k}$, where

$$
I_{1, k}=\sum_{0 \leq j \leq j_{\epsilon}} \ldots, \quad I_{2, k}=\sum_{j_{\epsilon}<j<k / 2 \epsilon} \ldots, \quad I_{3, k}=\sum_{j \geq k / 2 \epsilon} \ldots
$$

By (2.12) and Cauchy-Schwartz inequality, for any fixed $\epsilon>0$ and $1 \leq j \leq j_{\epsilon}$,

$$
\left|\rho\left(a_{j}, a_{k+j}\right)\right| \leq \rho\left(a_{j}\right)^{\frac{1}{2}} \rho\left(a_{k+j}\right)^{\frac{1}{2}} \leq C\left|a_{k+j}\right|^{\frac{1}{2}} \leq C k^{-\frac{\alpha}{2}}, \quad k \rightarrow \infty
$$

implying

$$
\left|I_{1, k}\right| \leq C k^{\alpha-1} k^{-\frac{\alpha}{2}}=O\left(k^{-\left(1-\frac{\alpha}{2}\right)}\right)=o(1), \quad k \rightarrow \infty .
$$

Next, by 2.11) and 2.12, $\left|\rho\left(a_{j}, a_{j+k}\right)\right| \leq C\left|a_{j}\right| \wedge\left|a_{j+k}\right| \leq C j^{-\alpha},(\forall j, k \geq 1)$ and therefore

$$
I_{3, k} \leq C k^{\alpha-1} \sum_{j \geq k / 2 \epsilon} j^{-\alpha} \leq C \epsilon^{\alpha-1}
$$

can be made arbitrarily small uniformly in $k \geq 1$ by choosing $\epsilon>0$ small enough. Finally, by 2.19 and 2.11,

$$
\begin{equation*}
I_{2, k}=c_{0} k^{\alpha-1} \sum_{j_{\epsilon}<j<k / 2 \epsilon} \frac{1+\delta_{j, k}}{(k+j)^{\alpha}} \tag{2.20}
\end{equation*}
$$

where $\sup _{j \geq 1}\left|\delta_{j, k}\right|=0$ as $k \rightarrow \infty$. Note that for each $\epsilon>0$, as $k \rightarrow \infty$

$$
\begin{align*}
J_{k}(\epsilon) & :=k^{\alpha-1} \sum_{j_{\epsilon}<j<k / 2 \epsilon}(k+j)^{-\alpha}=\frac{1}{k} \sum_{\frac{j_{\epsilon}}{k}<\frac{j}{k}<1 / 2 \epsilon} \frac{1}{\left(1+\frac{j}{k}\right)^{\alpha}} \\
& \rightarrow \int_{0}^{1 / 2 \epsilon} \frac{\mathrm{~d} x}{(1+x)^{\alpha}}=\frac{1}{\alpha-1}\left(1-(2 \epsilon)^{\alpha-1}\right) \tag{2.21}
\end{align*}
$$

168 According to 2.20 and 2.21), for any $\delta>0$ and any $\epsilon_{0}>0$ one can find $0<\epsilon<\epsilon_{0}$ and $K_{0}>0$ such that $\left|I_{2, k}-c_{0} /(\alpha-1)\right|<\delta$ holds for all $k>K_{0}$.

2 (ii) It suffices to prove 2.17) since 2.18 follows from 2.17 and the dominated convergence theorem. According to (2.6), (2.15), 2.16),

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|\operatorname{Cov}\left(X_{0}, X_{k}\right)\right| & \leq C \sum_{k=1}^{\infty} \sum_{j=0}^{\infty}\left|a_{j}\right| \wedge\left|a_{j+k}\right| \\
& \leq C \sum_{k=1}^{\infty} \sum_{j=0}^{\infty}\left|a_{j+k}\right| \leq C \sum_{k=1}^{\infty} k\left|a_{k}\right|<\infty
\end{aligned}
$$

This proves (2.13) while (2.14) follows from (2.13), see e.g. (11], Proposition 3.3.1).

Proposition 3 is proved.

3. Partial sums limits of trawl processes

This section discusses partial sums limits for trawl processes in 1.1 satisfying the conditions of Proposition 3. Particularly, we detail conditions on the seed process $\{\gamma(u), u \in \mathbb{R}\}$ which guarantee that the partial sums process of the trawl process $\left\{X_{k}\right\}$ with regularly decaying trawl 2.12) tends to either a Gaussian process (fractional Brownian motion with Hurst parameter $H=(3-\alpha) / 2 \in(1 / 2,1))$ or to an α-stable Lévy process.
The following decomposition of the partial sums process as a sum of independent random variables is crucial for the proofs of Theorem 1 and Theorem 2 ,

Lemma 1 (Decomposition). Let $\left\{X_{k}\right\}$ be as in 1.1. Then $S_{n}=\sum_{k=1}^{n} X_{k}=$ $\sum_{s=-\infty}^{n} Z_{s, n}$, where

$$
\begin{equation*}
Z_{s, n}=\sum_{k=1 \vee s}^{n} \gamma_{s}\left(a_{k-s}\right), \quad-\infty<s \leq n \tag{3.22}
\end{equation*}
$$

are independent r.v.s.
The proof of Lemma 1 follows trivially from the definition of X_{k} and the independence of the sequence $\left(\gamma_{s}\right)_{s \in \mathbb{Z}}$. Write $\rightarrow_{f . d . d \text {. for the weak convergence of }}$ finite-dimensional distributions and $\rightarrow_{\mathcal{D}\left(J_{1}\right)}$ and $\rightarrow_{\mathcal{D}\left(M_{1}\right)}$ for the weak convergence of random elements in the Skorohod space $D[0,1]$ endowed with the J_{1} and M_{1}-topologies, respectively. For the definition of these topologies, see [31], (4], 24.
Denote $|\mu|_{2+\delta}(u)=\mathbb{E}|\gamma(u)|^{2+\delta}$ the absolute $(2+\delta)$-moment of the seed process.
3.1. Gaussian limit of the partial sums process

Theorem 1. Consider a trawl process $\left\{X_{k}\right\}$ defined in 1.1.

In view of 2.14) and Lemma 1, relation (3.27) follows by Lindeberg's theorem provided

$$
\begin{equation*}
L_{n}:=\sum_{s=-\infty}^{n} \mathbb{E}\left|Z_{s, n}\right|^{2+\delta}=o\left(n^{\frac{(3-\alpha)(2+\delta)}{2}}\right) \tag{3.28}
\end{equation*}
$$

The Lyapunov condition (3.28) seems to have been introduced quite early in the literature, see [25] or more recently ([12], theorem 3.5). By Minkowski's inequality and assumptions 2.9 and 3.23 we obtain

$$
\begin{align*}
\mathbb{E}\left|Z_{s, n}\right|^{2+\delta} & \leq\left(\sum_{k=1 \vee s}^{n}\left(\mathbb{E}\left|\gamma\left(a_{k-s}\right)\right|^{2+\delta}\right)^{\frac{1}{2+\delta}}\right)^{2+\delta} \tag{3.29}\\
& \leq C\left(\sum_{k=1 \vee s}^{n}\left|a_{k-s}\right|^{\frac{1}{2}}\right)^{2+\delta} \leq C\left(\sum_{k=1 \vee s}^{n}|k-s|_{+}^{-\frac{\alpha}{2}}\right)^{2+\delta}
\end{align*}
$$

214 (with $|\ell|_{+}=\ell \vee 0$) and therefore $L_{n} \leq C\left(L_{n}^{-}+L_{n}^{+}\right)$, where

$$
\begin{aligned}
L_{n}^{-} & =\sum_{s=-\infty}^{0}\left(\sum_{k=1}^{n}|k-s|_{+}^{-\frac{\alpha}{2}}\right)^{2+\delta}=\sum_{s=0}^{\infty}\left(\sum_{k=1}^{n}(k+s)^{-\frac{\alpha}{2}}\right)^{2+\delta} \\
L_{n}^{+} & =\sum_{s=1}^{n}\left(\sum_{k=1}^{n} k^{-\frac{\alpha}{2}}\right)^{2+\delta}=n\left(\sum_{k=1}^{n} k^{-\frac{\alpha}{2}}\right)^{2+\delta}
\end{aligned}
$$

Here, $L_{n}^{+}=O\left(n\left(n^{1-\frac{\alpha}{2}}\right)^{2+\delta}\right)=o\left(n^{\frac{(3-\alpha)(2+\delta)}{2}}\right)$. The same relation for L_{n}^{-}follows

$$
\begin{aligned}
L_{n}^{-} & \leq \int_{0}^{\infty} \mathrm{d} x\left(\int_{0}^{n}(x+y)^{-\frac{\alpha}{2}} \mathrm{~d} y\right)^{2+\delta}=c n\left(n^{1-\frac{\alpha}{2}}\right)^{2+\delta}, \quad \text { with } \\
c & =\int_{0}^{\infty} \mathrm{d} x\left(\int_{0}^{1}(x+y)^{-\frac{\alpha}{2}} \mathrm{~d} y\right)^{2+\delta}<\infty
\end{aligned}
$$

This proves (3.28) and the one-dimensional convergence in (3.27).
Finite-dimensional convergence in (3.24) follows similarly using Cramér-Wold device. Finally, the tightness in $\mathcal{D}\left(J_{1}\right)$ of the partial sums process in (3.24) fol220 lows by Kolmogorov's criterion and from property 2.14) (see, e.g. [11], Proposition 4.2.2). This proves part (i).
(ii) Again, it suffices to prove the convergence of one-dimensional distributions:

$$
\begin{equation*}
n^{-1 / 2} S_{n} \rightarrow_{\text {law }} \mathcal{N}\left(0, \sigma^{2}\right) \tag{3.30}
\end{equation*}
$$

224 By writing S_{n} as in (3.22) and using Lindeberg's theorem relation 3.30 follows from

$$
\begin{equation*}
L_{n}=\sum_{s=-\infty}^{n} \mathbb{E}\left|Z_{s, n}\right|^{2+\delta}=o\left(n^{\frac{2+\delta}{2}}\right) \tag{3.31}
\end{equation*}
$$

226 Using Minkowski's inequality and assumptions (3.23 and 2.16) similarly as in part (i) we obtain

$$
\begin{align*}
\mathbb{E}\left|Z_{s, n}\right|^{2+\delta} & \leq C\left(\sum_{k=1 \vee s}^{n}\left|a_{k-s}\right|^{\frac{1}{2}}\right)^{2+\delta} \tag{3.32}\\
& \leq C\left(\sum_{k=1 \vee s}^{n}\left|(k-s) a_{k-s}\right|\right)^{\frac{2+\delta}{2}}\left(\sum_{k=1 \vee s}^{n}(k-s)^{-1}\right)^{\frac{2+\delta}{2}} \\
& \leq C\left(\sum_{k=1 \vee s}^{n}(k-s)^{-1}\right)^{\frac{2+\delta}{2}} \tag{3.33}
\end{align*}
$$

and hence

$$
\begin{aligned}
& \sum_{s=-n}^{n} \mathbb{E}\left|Z_{s, n}\right|^{2+\delta} \leq C n(\log n)^{\frac{2+\delta}{2}}=o\left(n^{\frac{2+\delta}{2}}\right) \\
& \sum_{s=-\infty}^{-n} \mathbb{E}\left|Z_{s, n}\right|^{2+\delta} \leq C \sum_{s=n}^{\infty}\left(\sum_{k=1}^{n} \frac{1}{k+s}\right)^{\frac{2+\delta}{2}} \leq C \sum_{s=n}^{\infty}\left(n s^{-1}\right)^{\frac{2+\delta}{2}} \leq C n=o\left(n^{\frac{2+\delta}{2}}\right)
\end{aligned}
$$

proving (3.31) and (3.30). To show the last statement of (ii), the tightness in $D[0,1]$, it suffices to prove the bound

$$
\begin{equation*}
\mathbb{E}\left|S_{n}\right|^{2+\delta} \leq C n^{\frac{2+\delta}{2}} \tag{3.34}
\end{equation*}
$$

see ([11], Proposition 4.4.4). By Rosenthal's inequality,

$$
\mathbb{E}\left|S_{n}\right|^{2+\delta} \leq C\left(\sum_{s=-\infty}^{n}\left(\mathbb{E}\left|Z_{s, n}\right|^{2+\delta}\right)^{\frac{2}{2+\delta}}\right)^{\frac{2+\delta}{2}}
$$

Using (3.32) and $\sum_{k=1}^{\infty}\left|a_{k}\right|^{\frac{1}{2}}<\infty$, we get $\max _{|s| \leq n} \mathbb{E}\left|Z_{s, n}\right|^{2+\delta}<C$ and

$$
\begin{align*}
\sum_{s=-\infty}^{-n}\left(\mathbb{E}\left|Z_{s, n}\right|^{2+\delta}\right)^{\frac{2}{2+\delta}} & \leq C \sum_{s=n}^{\infty}\left(\sum_{k=1}^{n}\left|a_{k+s}\right|^{\frac{1}{2}}\right)^{2} \\
& \leq C \sum_{k_{1}, k_{2}=1}^{n} \sum_{s=n}^{\infty}\left|a_{k_{1}+s}\right|^{\frac{1}{2}}\left|a_{k_{2}+s}\right|^{\frac{1}{2}} \leq C n \tag{3.35}
\end{align*}
$$

232 This proves (3.34) and part (ii), too.
(iii) Similarly as in (3.29) and using (3.26) we get

$$
\mathbb{E}\left|Z_{s, n}\right|^{2+\delta} \leq C\left(\sum_{k=1 \vee s}^{n}\left|a_{k-s}\right|^{\frac{1}{2+\delta}}\right)^{2+\delta} \leq C \sum_{k=1 \vee s}^{n}\left|a_{k-s}\right|^{\frac{1}{2+\delta}} \leq C
$$

for any $-\infty<s \leq n$ and hence

$$
\begin{aligned}
& \sum_{s=-\infty}^{-n} \mathbb{E}\left|Z_{s, n}\right|^{2+\delta} \leq C \sum_{s=n}^{\infty} \sum_{k=1}^{n}\left|a_{k+s}\right|^{\frac{1}{2+\delta}} \leq C n \\
& \sum_{s=-\infty}^{-n}\left(\mathbb{E}\left|Z_{s, n}\right|^{2+\delta}\right)^{\frac{2}{2+\delta}} \leq C \sum_{s=n}^{\infty}\left(\sum_{k=1}^{n}\left|a_{k+s}\right|^{\frac{1}{2+\delta}}\right)^{2} \leq C n
\end{aligned}
$$

${ }_{234}$ as in 3.35 . Hence, 3.31 and (3.34 follow, proving part (iii) and completing the proof of Theorem 1

Remark 2. The crucial condition for Gaussian partial sums limit under longrange dependence assumption 2.12 in Theorem 1 (i) is 3.23). Clearly this condition is satisfied for Brownian motion $\gamma(u)=B(u)$, in which case $|\mu|_{2+\delta}(u)=$ $\mathbb{E}|B(u)|^{2+\delta}=|u|^{\frac{2+\delta}{2}} \mathbb{E}|B(1)|^{2+\delta}$. On the other hand, condition 3.23) is not satisfied for most jump processes. Particularly, if $\gamma(u)=P(u)-u, u \geq 0$ is a centered Poisson process with intensity $\mathbb{E} P(u)=u$, then

$$
|\mu|_{2+\delta}(u)=u \mathrm{e}^{-u}|1-u|^{2+\delta}+O\left(u^{2+\delta}+u^{2}\right) \sim u, \quad u \rightarrow 0
$$

${ }^{236}$ and 3.23 fails, but the first condition in 3.26 is satisfied. In particular, in the case of Poisson seed process, the trawl process satisfies Donsker's theorem
${ }_{238}$ if the trawl tends fast enough to 0 so that 3.26 holds.

Let us present further examples of seed processes satisfying the conditions in Theorem 1 .

Example 6 (Geometric centered Brownian motion). Set $\gamma(u)=\mathrm{e}^{B(u)-u / 2}-$
${ }_{242} \quad 1, u \geq 0$, where B is a standard Brownian motion as above. We have $\mathbb{E} \gamma(u)=0$ and, if $u \leq v$,

$$
\begin{aligned}
\rho(u, v) & =\mathbb{E} \exp \left\{B(u)+B(v)-\frac{u+v}{2}\right\}-1 \\
& =\exp \left\{\left(\frac{1}{2} \mathbb{E}(B(u)+B(v))\right)^{2}-\frac{u+v}{2}\right\}-1 \\
& =\exp \left\{\left(\frac{1}{2}(u+v+2 u)-\frac{u+v}{2}\right\}-1\right. \\
& =\mathrm{e}^{u}-1 \\
& =u \wedge v+O\left((u \wedge v)^{2}\right), \quad u \wedge v \rightarrow 0 .
\end{aligned}
$$

244 Therefore 2.11 is satisfied. We also have by Taylor's expansion that $|\mu|_{4}(u)=$ $\mathbb{E}\left|\mathrm{e}^{B(u)-u / 2}-1\right|^{4}=\mathrm{e}^{6 u}-4 \mathrm{e}^{3 u}+6 \mathrm{e}^{u}-3=O\left(u^{2}\right), u \rightarrow 0$ so that 3.23 is

Example 7 (Diffusion process). Let

$$
\gamma(u)=\int_{0}^{u} b(v) \mathrm{d} B(v), \quad u \in \mathbb{R}_{+}
$$

where B is a Brownian motion, and $(b(v))_{v \in \mathbb{R}_{+}}$is a random predictable process with $\lim _{v \rightarrow 0} \mathbb{E} b^{2}(v)=C>0$. Then $\rho(u)=\int_{0}^{u} \mathbb{E} b^{2}(v) \mathrm{d} v \sim C u(u \rightarrow 0)$ and $\rho(u, v)=\rho(u), 0 \leq u \leq v$ so that 2.11 is satisfied. Moreover, if $\mathbb{E}|b(v)|^{2+\delta} \leq C$
250 then by the moment inequality for Brownian integrals (see, e.g. 18, Theorem 9.9.2)

$$
\begin{aligned}
|\mu|_{2+\delta}(u) & \leq C \mathbb{E}\left(\int_{0}^{u} b^{2}(v) \mathrm{d} v\right)^{\frac{2+\delta}{2}} \\
& \leq C\left(\int_{0}^{u} \mathbb{E}|b(v)|^{2+\delta} \mathrm{d} v\right)\left(\int_{0}^{u} 1 \mathrm{~d} v\right)^{\frac{2+\delta}{2}-1} \leq C u^{\frac{2+\delta}{2}}
\end{aligned}
$$

hence assumption 3.23 holds, too.

3.2. Stable limit of the partial sums process

This subsection studies integer-valued trawl processes with seeds given by a general point process. We first discuss conditions on this point process guaranteeing the existence and stationarity of the trawl process. We assume that seed process $\gamma=\{\gamma(u), u \geq 0\}$ is a piecewise constant nondecreasing process

$$
\begin{equation*}
\gamma(u)=\sum_{k=0}^{\infty} k \cdot \mathbb{1}\left(\tau_{k} \leq u<\tau_{k+1}\right) \tag{3.36}
\end{equation*}
$$

Proposition 4. (i) For the seed process γ in (3.36), conditions 3.37)-(3.39)
(ii) In addition to $(3.37)-(3.39)$, assume that

$$
\begin{equation*}
\mathbb{E} \gamma(v) \mathbb{1}\left(\tau_{1} \leq u, \tau_{2} \leq v\right)=o(u), \quad 0 \leq u \leq v \rightarrow 0 \tag{3.40}
\end{equation*}
$$

278 Then 2.11 is satisfied. As a consequence, for regularly decaying trawl as in (2.12) the corresponding stationary trawl process $\left\{X_{k}\right\}$ in 1.1) enjoys the long

280 memory properties in 2.13 and 2.14.
Proof. (i) We shall prove that $\mu(u)$ and from see (3.37), $\rho(u)$ can be approxi282 mated by $\mathbb{P}\left(\tau_{1} \leq u\right)=u(1+o(1))$ as $u \rightarrow 0$.

From (3.36) we have

$$
\begin{equation*}
\mathbb{1}\left(\tau_{1} \leq u\right) \leq \gamma(u) \leq \mathbb{1}\left(\tau_{1} \leq u\right)+\gamma(u) \mathbb{1}\left(\tau_{2} \leq u\right) \tag{3.41}
\end{equation*}
$$

and hence

$$
\mathbb{P}\left(\tau_{1} \leq u\right) \leq \mu(u) \leq \mathbb{P}\left(\tau_{1} \leq u\right)+\mathbb{E} \gamma(u) \mathbb{1}\left(\tau_{2} \leq u\right)
$$

From (3.37), $\mathbb{P}\left(0<\tau_{1} \leq u\right)=u(1+o(1))$ and from 3.39),

$$
\mathbb{E} \gamma(u) \mathbb{1}\left(\tau_{2} \leq u\right) \leq \mathbb{E} \gamma^{2}(u) \mathbb{1}\left(\tau_{2} \leq u\right)=O\left(u^{2}\right)
$$

Therefore,

$$
\begin{equation*}
\mu(u)=u(1+o(1))+O\left(u^{2}\right)=u(1+o(1)), \quad u \rightarrow 0 \tag{3.42}
\end{equation*}
$$

Similarly, for the second moment $\mu_{2}(u)=\mathbb{E} \gamma^{2}(u)$ from 3.41, 3.37, 3.39) we obtain

$$
\mathbb{P}\left(\tau_{1} \leq u\right) \leq \mu_{2}(u) \leq \mathbb{P}\left(\tau_{1} \leq u\right)+2 \mathbb{E} \gamma(u) \mathbb{1}\left(\tau_{2} \leq u\right)+\mathbb{E} \gamma^{2}(u) \mathbb{1}\left(\tau_{2} \leq u\right)
$$

implying $\mu_{2}(u)=u(1+o(1))+O\left(u^{2}\right)=u(1+o(1))(u \rightarrow 0)$ and

$$
\begin{equation*}
\rho(u)=\mu_{2}(u)-\mu^{2}(u)=u(1+o(1)), \quad u \rightarrow 0 \tag{3.43}
\end{equation*}
$$

286 Clearly, (3.42 and (3.43) imply (2.3) and (2.8). As noted in beginning of Section $2.2,(2.8)$ implies (2.4) for any trawl satisfying (2.9), and the existence and stationarity of the corresponding trawl process $\left\{X_{k}\right\}$.
(ii) Consider 2.11. Since
$\rho(u, v)=\mathbb{E} \gamma(u) \gamma(v)-\mu(u) \mu(v)=\mathbb{E} \gamma(u) \gamma(v)-u v(1+o(1))=\mathbb{E} \gamma(u) \gamma(v)+o(u \wedge v)$, as $0<u \leq v \rightarrow 0$, condition 2.11 follows from

$$
\begin{equation*}
\mathbb{E} \gamma(u) \gamma(v)=u(1+o(1)), \quad 0<u \leq v \rightarrow 0 \tag{3.44}
\end{equation*}
$$

290 From (3.41) for $0<u \leq v$ we obtain

$$
\begin{aligned}
\mathbb{P}\left(\tau_{1} \leq u\right) \leq & \mathbb{E} \gamma(u) \gamma(v) \\
\leq & \mathbb{P}\left(\tau_{1} \leq u\right)+\mathbb{E} \gamma(u) \mathbb{1}\left(\tau_{2} \leq u\right)+\mathbb{E} \gamma(v) \mathbb{1}\left(\tau_{1} \leq u, \tau_{2} \leq v\right) \\
& \quad+\mathbb{E} \gamma(u) \gamma(v) \mathbb{1}\left(\tau_{2} \leq u\right)
\end{aligned}
$$

where

$$
\mathbb{E} \gamma(u) \gamma(v) \mathbb{1}\left(\tau_{2} \leq u\right) \leq\left(\mathbb{E} \gamma^{2}(u) \mathbb{1}\left(\tau_{2} \leq u\right)\right)^{\frac{1}{2}}\left(\mathbb{E} \gamma^{2}(v)\right)^{\frac{1}{2}} \leq C u\left(\mathbb{E} \gamma^{2}(v)\right)^{\frac{1}{2}}
$$

and $\mathbb{E} \gamma^{2}(v)=\mu_{2}(v)=O(v)$, see 3.37, 3.39. Hence from 3.40 we have that

$$
\mathbb{E} \gamma(u) \mathbb{1}\left(\tau_{2} \leq u\right)+\mathbb{E} \gamma(v) \mathbb{1}\left(\tau_{1} \leq u, \tau_{2} \leq v\right)+\mathbb{E} \gamma(u) \gamma(v) \mathbb{1}\left(\tau_{2} \leq u\right)=o(u)
$$

implying (3.44) and (2.11), too.
Theorem 2. Assume that $a_{j} \geq 0$ satisfy the regular decay condition in 2.12 with exponent $1<\alpha<2$ and that the seed process in (3.36) satisfies conditions (3.37)-(3.39). Then

$$
\begin{equation*}
n^{-\frac{1}{\alpha}}\left(S_{[n t]}-\mathbb{E} S_{[n t]}\right) \rightarrow_{\text {f.d.d. }} \quad L_{\alpha}(t), \tag{3.45}
\end{equation*}
$$

where $L_{\alpha}(t), t \geq 0$ is a homogeneous α-stable Lévy process with characteristic function

$$
\begin{equation*}
\mathbb{E} \mathrm{e}^{\mathrm{i} z L_{\alpha}(t)}=\exp \left\{-t|z|^{\alpha} \frac{c_{0} \Gamma(2-\alpha)}{1-\alpha}\left(\cos \left(\pi \frac{\alpha}{2}\right)-\mathrm{i} \cdot \operatorname{sgn}(z) \sin \left(\pi \frac{\alpha}{2}\right)\right)\right\}, \quad z \in \mathbb{R} \tag{3.46}
\end{equation*}
$$

Proof. Denote

$$
\begin{equation*}
Z=\sum_{j=0}^{\infty} \gamma\left(a_{j}\right), Z^{*}=\sum_{j=0}^{\infty} \mathbb{1}\left(\gamma\left(a_{j}\right) \geq 1\right)=\#\left\{j \geq 0: a_{j} \geq \tau_{1}\right\}, Z^{* *}=Z-Z^{*} \tag{3.47}
\end{equation*}
$$

Then $Z \geq Z^{*} \geq 0$ and the series for Z in 3.47 converges a.s. in view of 3.42 and has finite mean:

$$
\mathbb{E} Z=\sum_{j=0}^{\infty} \mu\left(a_{j}\right) \leq C \sum_{j=0}^{\infty} a_{j}<\infty
$$

a exists $j_{0}>0$ such that $c_{0}(1-\epsilon) j^{-\alpha}<a_{j}<c_{0}(1+\epsilon) j^{-\alpha}, \forall j \geq j_{0}$. Clearly, for any $k \geq 1$ we have $\mathbb{P}\left(Z_{-} \geq k+j_{0}\right) \leq \mathbb{P}\left(Z^{*} \geq k\right) \leq \mathbb{P}\left(Z_{+} \geq k-j_{0}\right)$, where

$$
\begin{aligned}
& Z_{+}=\sum_{j=j_{0}}^{\infty} \mathbb{1}\left(\tau_{1} \leq c_{0}(1+\epsilon) j^{-\alpha}\right)=\#\left\{j \geq j_{0}: \tau_{1} \leq c_{0}(1+\epsilon) j^{-\alpha}\right\} \\
& Z_{-}=\sum_{j=j_{0}}^{\infty} \mathbb{1}\left(\tau_{1} \leq c_{0}(1-\epsilon) j^{-\alpha}\right)=\#\left\{j \geq j_{0}: \tau_{1} \leq c_{0}(1-\epsilon) j^{-\alpha}\right\}
\end{aligned}
$$

According to (3.37), as $k \rightarrow \infty$,
$\mathbb{P}\left(Z_{+} \geq k-j_{0}\right)=\mathbb{P}\left(\tau_{1}<c_{0}(1+\epsilon) k^{-\alpha}\right)=\int_{0}^{c_{0}(1+\epsilon) k^{-\alpha}} \theta(y) \mathrm{d} y \sim c_{0}(1+\epsilon) k^{-\alpha}$
and, similarly,

$$
\mathbb{P}\left(Z_{-} \geq k+j_{0}\right)=\mathbb{P}\left(\tau_{1}<c_{0}(1-\epsilon)\left(k+2 j_{0}-1\right)^{-\alpha}\right) \sim c_{0}(1-\epsilon) k^{-\alpha}
$$

Therefore, $c_{0}(1-\epsilon) \leq \liminf k^{\alpha} \mathbb{P}\left(Z^{*} \geq k\right) \leq \lim \sup k^{\alpha} \mathbb{P}\left(Z^{*} \geq k\right) \leq c_{0}(1+\epsilon)$, where $\epsilon>0$ is arbitrary small, proving the first fact in (3.49). To prove the where $\epsilon>0$ is arbitrary small, proving the first fact in (3.49). To prove the
second fact in (3.49), note $Z^{* *} \leq \sum_{j=0}^{\infty} \gamma\left(a_{j}\right) \mathbb{1}\left(a_{j} \geq \tau_{2}\right)$ and then by (3.39) and Minkowski's inequality we obtain

$$
\mathbb{E}^{\frac{1}{2}}\left(Z^{* *}\right)^{2} \leq \sum_{j=0}^{\infty}\left(\mathbb{E} \gamma^{2}\left(a_{j}\right) \mathbb{1}\left(a_{j} \geq \tau_{2}\right)\right)^{\frac{1}{2}} \leq C \sum_{j=0}^{\infty}\left|a_{j}\right|<\infty
$$

proving 3.49 and hence 3.48 as well. In turn, 3.48 implies that the distribution of r.v. Z belongs to the domain of attraction of asymmetric α-stable
We shall prove that the tail d.f. of r.v. Z decays regularly with exponent $\alpha \in(1,2)$:

$$
\begin{equation*}
\mathbb{P}(Z>y)=c_{0} y^{-\alpha}(1+o(1)), \quad \text { as } y \rightarrow \infty \tag{3.48}
\end{equation*}
$$

Relation (3.48) follows from 3.47 and

$$
\begin{equation*}
\mathbb{P}\left(Z^{*}>y\right)=c_{0} y^{-\alpha}(1+o(1)), \text { and } \mathbb{P}\left(Z^{* *}>y\right)=o\left(y^{-\alpha}\right), \text { as } y \rightarrow \infty \tag{3.49}
\end{equation*}
$$

Consider the first relation in (3.49). Since $\mathbb{P}\left(Z^{*}>k-1\right) \geq \mathbb{P}\left(Z^{*}>y\right) \geq \mathbb{P}\left(Z^{*}>\right.$ k) when $k-1 \leq y \leq k$, it suffices to show 3.49 for $y=k-1$, or the probability $\mathbb{P}\left(Z^{*} \geq k\right), k \geq 1$. As noted in the proof of Proposition 3, for any $\epsilon>0$ there law, viz.,

$$
\begin{equation*}
n^{-\frac{1}{\alpha}} \sum_{k=1}^{[n t]}\left(Z_{k}-\mathbb{E} Z_{k}\right) \rightarrow_{f . d . d .} \quad L_{\alpha}(t) \tag{3.50}
\end{equation*}
$$

where $Z_{k}=\sum_{j=0}^{\infty} \gamma_{k}\left(a_{j}\right), k \in \mathbb{Z}$ are i.i.d. copies of r.v. Z in 3.47) and L_{α} is the

Indeed,

$$
n^{-\frac{1}{\alpha}}\left(S_{[n t]}-\mathbb{E} S_{[n t]}\right)=n^{-\frac{1}{\alpha}}\left(\widetilde{S}_{[n t]}-\mathbb{E} \widetilde{S}_{[n t]}\right)+R_{[n t]}
$$

where $R_{n}=n^{-\frac{1}{\alpha}}\left(S_{n}-\widetilde{S}_{n}\right)+n^{-\frac{1}{\alpha}} \mathbb{E}\left(\widetilde{S}_{n}-S_{n}\right)=o_{\mathbb{P}}(1)$ according to (3.51). We have $\widetilde{S}_{n}-S_{n}=R_{n}^{\prime}-R_{n}^{\prime \prime}$, where

$$
R_{n}^{\prime}=\sum_{1 \leq s \leq n} \sum_{j>n-s} \gamma_{s}\left(a_{j}\right), \quad R_{n}^{\prime \prime}=\sum_{s \leq 0} \sum_{1 \leq k \leq n} \gamma_{s}\left(a_{k-s}\right),
$$

then $R_{n}^{\prime} \geq 0, R_{n}^{\prime \prime} \geq 0$.
Using 3.42 and 2.12 we obtain

$$
\begin{aligned}
\mathbb{E} R_{n}^{\prime} & =\sum_{1 \leq s \leq n} \sum_{j>n-s} \mathbb{E} \gamma_{s}\left(a_{j}\right)=\sum_{1 \leq s \leq n} \sum_{j>n-s} \mu\left(a_{j}\right) \\
& \leq C \sum_{1 \leq s \leq n} \sum_{j>n-s} j^{-\alpha}=O\left(n^{2-\alpha}\right) \\
\mathbb{E} R_{n}^{\prime \prime} & =\sum_{s \leq 0} \sum_{1 \leq k \leq n} \mathbb{E} \gamma_{s}\left(a_{k-s}\right)=\sum_{s \leq 0} \sum_{1 \leq k \leq n} \mu\left(a_{k-s}\right) \\
& =\sum_{s \geq 0} \sum_{1 \leq k \leq n} \frac{1}{(k+s)^{\alpha}}=O\left(n^{2-\alpha}\right)
\end{aligned}
$$

implying (3.51) since $2-\alpha<1 / \alpha$ for $1<\alpha<2$. Theorem 2 is proved.

Example 8 (Jump processes satisfying the assumptions of Theorem 2). Note that for a jump process in (3.36) we have $(\gamma(u)=k)=\left(\tau_{k} \leq u<\tau_{k+1}\right)$ since the sets on the r.h.s. of (3.36) are disjoint. Conditions in 3.37)-3.40 on the seed process $\{\gamma(u), u \geq 0\}$ in Theorem 2 are rather weak and essentially involve the distribution of the first jump-point τ_{1} provided the second jump τ_{2} cannot occur very fast after τ_{1}. Particularly,

- The Bernoulli seed process of Example 4 can be written in the form (3.36), where $\tau_{1} \sim \mathcal{U}[0,1]$ is uniformly distributed and $\tau_{k}=\infty$, for $k \geq 2$. In this case, (3.37) holds with $\theta(u)=\mathbb{1}(u \leq 1)$ while 3.38$)-(3.40)$ are trivially satisfied by $\tau_{2}=\infty$ a.s., which means that the sum (3.36) contains two terms only.
- The binomial seed process $b(u ; n)=\sum_{j=1}^{n} \mathbb{1}\left(U_{j} \leq u\right)$ (see Example 4) can be represented as 3.36 with $\tau_{1}=\min \left\{U_{j}: 1 \leq j \leq n\right\}$ and τ_{j} is the j-th order statistic of U_{1}, \ldots, U_{n}, if $2 \leq j \leq n$. Finally $\tau_{n+1}=\infty$. Thus, the probability density of the joint distribution of $\left(\tau_{j}, 1 \leq j \leq n\right)$ equals $\theta\left(u_{1}, \ldots, u_{n}\right)=n!\mathrm{d} u_{1} \cdots \mathrm{~d} u_{n} \mathbb{1}\left(0<u_{1}<\cdots<u_{n}<1\right)$. Particularly, $\theta(u)=\mathbb{P}\left(\tau_{1} \in \mathrm{~d} u\right) / \mathrm{d} u=n(1-u)^{n-1}$ satisfies $\lim _{u \rightarrow 0} \theta(u)=n$, or condition 3.37) with 1 replaced by n, while $\theta\left(u_{1}, u_{2}\right)=(1 / 2) n(n-1)(1-$ $\left.u_{2}\right)^{n-2} \mathbb{1}\left(0<u_{1}<u_{2}<1\right)$. Since $\gamma(u)=b(u ; n) \leq n$, condition 3.38) is trivially satisfied and 3.39) follows by $\mathbb{E} \gamma(u) \mathbb{1}\left(\theta_{2} \leq u\right) \leq n \mathbb{P}\left(\theta_{2} \leq u\right) \leq$ $(n / 2) n(n-1) \int_{0<u_{1}<u_{2} \leq u} \mathrm{~d} u_{1} \mathrm{~d} u_{2}=(n / 4) n(n-1) u^{2}=O\left(u^{2}\right)$. Relation (3.40) follows similarly from

$$
\begin{aligned}
\mathbb{E} \gamma(v) \mathbb{1}\left(\tau_{1} \leq u, \tau_{2} \leq v\right) \leq & n \mathbb{P}\left(\tau_{1} \leq u, \tau_{2} \leq v\right) \\
\leq(n / 2) n & (n-1) \int_{0<u_{1} \leq u, u_{1}<u_{2} \leq v} \mathrm{~d} u_{1} \mathrm{~d} u_{2} \\
& \leq(n / 2) n(n-1) u v=o(u), \quad 0<u<v \rightarrow 0
\end{aligned}
$$

- The Poisson process $\gamma(u)=P(u)$ of Example 3 can be written as 3.36 with i.i.d. $\tau_{1}, \tau_{k}-\tau_{k-1}, k \geq 2$ distributed according to the exponential law with density $\theta(u)=\mathrm{e}^{-u}, u>0$. In this case, 3.37) is satisfied and 3.39) holds since

$$
\begin{align*}
\mathbb{E} P(u)^{2} \mathbb{1}\left(\tau_{2} \leq u\right) & =\mathbb{E} P(u)^{2}-\mathbb{P}(P(u)=1) \\
& =u+u^{2}-u \mathrm{e}^{-u}=O\left(u^{2}\right) \tag{3.52}
\end{align*}
$$

Condition 3.40 can be also directly verified for $\gamma(u)=P(u)$ using properties of Poisson process. The Poisson process is a particular case of generalized renewal process defined below.

- A generalized renewal process is a jump process γ in (3.36) such that r.v.s $U_{k}=\tau_{k}-\tau_{k-1}, k \geq 1$ (intervals between successive jumps) are independent. Sufficient assumptions on the distribution of $U_{k}, k \geq 1$ guaranteeing (3.37)- 3.40) for such process are given in Proposition 5 below.
- The mixed Poisson process $\gamma(u)=P(\zeta u)$ of Example 3 also satisfies 3.37)(3.40) under mild conditions on the mixing r.v. ζ. See Proposition 6

Proposition 5. Let $\gamma=\{\gamma(u), u \geq 0\}$ in (3.36) be a generalized renewal process such that the lengths $U_{k}=\tau_{k}-\tau_{k-1}, k \geq 1$ between successive jumps of (3.36) have uniformly bounded probability densities, viz.,

$$
\begin{equation*}
\mathbb{P}\left(U_{k} \leq u\right)=\int_{0}^{u} \theta_{k}(y) \mathrm{d} y, k \geq 1, \quad \text { with } \sup _{k \geq 1, u \geq 0} \theta_{k}(u) \leq K<\infty \tag{3.53}
\end{equation*}
$$

Moreover, assume $\lim _{u \rightarrow 0} \theta_{1}(u)=1$. Then γ satisfies conditions (3.37)-(3.40).

Proof. Condition (3.37) is obviously satisfied. Consider (3.38). We use the

$$
\begin{equation*}
\gamma(u)=\sum_{k=1}^{\infty} \mathbb{1}\left(\tau_{k} \leq u\right)=\sum_{k=1}^{\infty} \mathbb{1}\left(U_{1}+\cdots+U_{k} \leq u\right) \tag{3.54}
\end{equation*}
$$

see ([4], chapter 23, p. 307). Then by Minkowski's inequality and (3.53), (3.54) for any $u \geq 0$ we obtain

$$
\begin{aligned}
\mathbb{E} \gamma(u)^{2+\delta} & \leq\left(\sum_{k=1}^{\infty} \mathbb{P}\left(\tau_{k} \leq u\right)^{1 /(2+\delta)}\right)^{2+\delta} \\
& =\left(\sum_{k=1}^{\infty}\left\{\int_{\mathbb{R}_{+}^{k}} \mathbb{1}\left(z_{1}+\cdots+z_{k} \leq u\right) \prod_{i=1}^{k} \theta_{i}\left(z_{i}\right) \mathrm{d} z_{i}\right\}^{1 /(2+\delta)}\right)^{2+\delta} \\
& \leq\left(\sum_{k=1}^{\infty}\left\{K^{k} \int_{\mathbb{R}_{+}^{k}} \mathbb{1}\left(z_{1}+\cdots+z_{k} \leq u\right) \prod_{i=1}^{k} \mathrm{~d} z_{i}\right\}^{1 /(2+\delta)}\right)^{2+\delta} \\
& =\left(\sum_{k=1}^{\infty}\left\{\frac{K^{k} u^{k}}{k!}\right\}^{1 /(2+\delta)}\right)^{2+\delta}<\infty
\end{aligned}
$$

proving (3.38). Next, using $\mathbb{1}\left(\tau_{j} \leq u\right) \mathbb{1}\left(\tau_{k} \leq u\right)=\mathbb{1}\left(\tau_{k} \leq u\right), j \leq k$

$$
\begin{aligned}
\mathbb{E} \gamma(u)^{2} \mathbb{1}\left(\tau_{2} \leq u\right) & =\mathbb{E}\left(\sum_{k=1}^{\infty} \mathbb{1}\left(\tau_{k} \leq u\right)\right)^{2} \mathbb{1}\left(\tau_{2} \leq u\right) \\
& =\mathbb{E}\left(\sum_{k=1}^{\infty} k \cdot \mathbb{1}\left(\tau_{k} \leq u\right)\right) \mathbb{1}\left(\tau_{2} \leq u\right) \\
& \leq \sum_{k=2}^{\infty}(k+1) \int_{\mathbb{R}_{+}^{k}} \mathbb{1}\left(z_{1}+\cdots+z_{k} \leq u\right) \prod_{i=1}^{k} \theta_{i}\left(z_{i}\right) \mathrm{d} z_{i} \\
& \leq \sum_{k=2}^{\infty} K^{k}(k+1) \int_{\mathbb{R}_{+}^{k}} \mathbb{1}\left(z_{1}+\cdots+z_{k} \leq u\right) \prod_{i=1}^{k} \mathrm{~d} z_{i} \\
& =\sum_{k=2}^{\infty} \frac{K^{k}(k+1) u^{k}}{k!}=O\left(u^{2}\right)
\end{aligned}
$$

hence (3.39) holds. Finally, $\mathbb{E} \gamma(v) \mathbb{1}\left(\tau_{1} \leq u, \tau_{2} \leq v\right)=\mathbb{E}\left(\sum_{k=1}^{\infty} \mathbb{1}\left(\tau_{k} \leq v\right)\right) \mathbb{1}\left(\tau_{1} \leq\right.$ $\left.u, \tau_{2} \leq v\right)=\mathbb{P}\left(\tau_{1} \leq u, \tau_{2} \leq v\right)+\sum_{k=2}^{\infty} \mathbb{P}\left(\tau_{k} \leq v, \tau_{1} \leq u, \tau_{2} \leq v\right)$, where366${ }^{366}$
$\mathbb{P}\left(\tau_{1} \leq u, \tau_{2} \leq v\right)=\mathbb{P}\left(U_{1} \leq u, U_{1}+U_{2} \leq v\right) \leq \mathbb{P}\left(U_{1} \leq u, U_{2} \leq v\right) \leq K^{2} u v$ and

$$
\begin{aligned}
\sum_{k=2}^{\infty} \mathbb{P}\left(\tau_{k} \leq v, \tau_{1} \leq u, \tau_{2} \leq v\right) & \leq \sum_{k=2}^{\infty} \mathbb{P}\left(\tau_{1} \leq u, \tau_{k}-\tau_{1} \leq v\right) \\
& =\mathbb{P}\left(U_{1} \leq u\right) \sum_{k=2}^{\infty} \mathbb{P}\left(U_{2}+\cdots+U_{k} \leq v\right) \\
& \leq K u \sum_{k=1}^{\infty} K^{k} \int_{\mathbb{R}_{+}^{k}} \mathbb{1}\left(z_{1}+\cdots+z_{k} \leq v\right) \prod_{i=1}^{k} \mathrm{~d} z_{i} \\
& \leq K u \sum_{k=1}^{\infty} \frac{K^{k} v^{k}}{k!} \leq C u v
\end{aligned}
$$

implying $\mathbb{E} \gamma(v) \mathbb{1}\left(\tau_{1} \leq u, \tau_{2} \leq v\right) \leq C u v=o(u)$ as $0 \leq u \leq v \rightarrow 0$, or 3.40.

Proof. Condition (3.37) follows from $\mathbb{P}\left(\tau_{1} \leq u\right)=\mathbb{E} \int_{0}^{\zeta u} \mathrm{e}^{-y} \mathrm{~d} y \sim \mathbb{E} \zeta=1(u \rightarrow$ $0)$. To show (3.38 we need the bound $E P(u)^{2+\delta} \leq 5\left(u \vee u^{2+\delta}\right)(u>0)$. To get it recall that $\mathbb{E}(P(u)-u)^{3}=u$ thus

$$
\begin{equation*}
\mathbb{E} P(u)^{3}=u+3 u^{2}+u^{3} \leq 4\left(u+u^{3}\right) \tag{3.55}
\end{equation*}
$$

and Jensen inequality yields the result $\mathbb{E} P(u)^{2+\delta} \leq 5^{\frac{2+\delta}{3}} u^{2+\delta}$ for $u \geq 1$, and if $u \leq 1$ simply quote that, since the Poisson process admits integer values, $\mathbb{E} P(u)^{2+\delta} \leq \mathbb{E} P(u)^{3} \leq 5 u$. Whence, $\mathbb{E} \zeta(u)^{2+\delta} \leq C \mathbb{E} \zeta^{2+\delta} u^{2+\delta}<\infty$ proving (3.38). Similarly using 3.52 we get

$$
\mathbb{E} \zeta(u)^{2} \mathbb{1}\left(\tau_{2} \leq u\right)=u^{2} \mathbb{E} \zeta^{2}+u \mathbb{E}\left[\zeta\left(1-\mathrm{e}^{-\zeta u}\right)\right] \leq 2 u^{2} \mathbb{E} \zeta^{2}=O\left(u^{2}\right) \quad(u \rightarrow 0)
$$

proving (3.39). To show 3.40 we use a suitable bound for Poisson process:
$\mathbb{E} P(v) \mathbb{1}\left(\tau_{1}^{*} \leq u, \tau_{2}^{*} \leq v\right) \leq C\left[\left(u\left(1-\mathrm{e}^{-u}\right)\right)^{2 / 3}\left(v^{1 / 3}+v\right)+u v\right], \quad 0<u<v<\infty$
which is valid for all $0<u<v<\infty$ and where $\tau_{j}^{*}, j \geq 1$ are jump times of the Poisson process $P(u)=\sum_{j=1}^{\infty} \mathbb{1}\left(\tau_{j}^{*} \leq u\right)$. Let $q(u, v)$ denote the l.h.s. of 3.56), then $q(u, v)=q_{1}(u, v)+q_{2}(u, v)$, with $q_{1}(u, v)=\mathbb{E} P(v) \mathbb{1}\left(\tau_{2}^{*} \leq u\right) \leq \mathbb{P}^{2 / 3}\left(\tau_{2}^{*} \leq\right.$ $u) \mathbb{E}^{1 / 3} P(v)^{3}$, where $\mathbb{P}\left(\tau_{2}^{*} \leq u\right)=\mathbb{P}(P(u) \geq 2)=1-\mathrm{e}^{-u}(1+u) \leq u\left(1-\mathrm{e}^{-u}\right)$ and, from $3.55, \mathbb{E} P(v)^{3} \leq 4\left[v+v^{3}\right]$. Therefore, $q_{1}(u, v)$ does not exceed the r.h.s. of (3.56). Next, since $\tau_{2}^{*}>u$ implies $P(u)=1$ we obtain $q_{2}(u, v)=\mathbb{E} P(v) \mathbb{1}\left(\tau_{1}^{*} \leq\right.$ $\left.u, u<\tau_{2}^{*} \leq v\right)=\mathbb{P}\left(\tau_{1}^{*} \leq u, u<\tau_{2}^{*} \leq v\right)+\mathbb{E}(P(v)-P(u)) \mathbb{1}(P(u)=1, P(v) \geq 1)$, here $\mathbb{P}\left(\tau_{1}^{*} \leq u, u<\tau_{2}^{*} \leq v\right)=\mathbb{P}(P(u)=1, P(v)-P(u) \geq 1)=u \mathrm{e}^{-u}(1-$ $\left.\mathrm{e}^{-(v-u)}\right) \leq u(v-u) \leq u v$ and similarly, $\mathbb{E}(P(v)-P(u)) \mathbb{1}(P(u)=1, P(v) \geq$
(3.56) in mind, we obtain

$$
\begin{aligned}
& \mathbb{E} \gamma(v) \mathbb{1}\left(\tau_{1} \leq u, \tau_{2} \leq v\right)=\mathbb{E} P(\zeta v) \mathbb{1}\left(\tau_{1}^{*} \leq \zeta u, \tau_{2}^{*} \leq \zeta v\right) \\
& \leq C \mathbb{E}\left[\left(\zeta u\left(1-\mathrm{e}^{-\zeta u}\right)\right)^{2 / 3}\left((\zeta v)^{1 / 3}+(\zeta v)\right)+\zeta^{2} u v\right] \\
& \leq C\left\{\mathbb{E}^{1 / 2}\left[(\zeta u)^{4 / 3}\left(1-\mathrm{e}^{-\zeta u}\right)^{4 / 3}\right] \mathbb{E}^{1 / 2}\left[(\zeta v)^{2 / 3}+(\zeta v)^{2}\right]+u v \mathbb{E} \zeta^{2}\right\} \\
& \leq C\left\{u^{2 / 3} \mathbb{E}^{1 / 2}\left[\zeta^{4 / 3}\left(1-\mathrm{e}^{-\zeta u}\right)^{4 / 3}\right]\left(v^{1 / 3}+v\right)+u v\right\}
\end{aligned}
$$

Recall that r.v.s $V_{1}, V_{2}, \ldots, V_{m}$ are said associated if

$$
\operatorname{Cov}\left(f\left(V_{1}, V_{2}, \ldots, V_{m}\right), g\left(V_{1}, V_{2}, \ldots, V_{m}\right)\right) \geq 0
$$

for all nondecreasing functions f and g for which the covariance exists. An (3.45) can be strengthened to

$$
\begin{equation*}
n^{-\frac{1}{\alpha}}\left(S_{[n t]}-\mathbb{E} S_{[n t]}\right) \rightarrow_{\mathcal{D}\left(M_{1}\right)} L_{\alpha}(t) \tag{3.58}
\end{equation*}
$$

${ }_{400}$ Proof. Since $\sqrt{3.58}$ follows from the association of $\left\{X_{k}\right\}$ and a general result in Louichi and Rio ([24], Theorem 1), by Lemma 2 it suffices to verify that the seed
$\gamma=\{\gamma(u), u \geq 0\}$ is associated, i.e. r.v.s $\gamma\left(u_{1}\right), \gamma\left(u_{2}\right), \ldots, \gamma\left(u_{m}\right)$ are associated for any $m \geq 1$ and any $0<u_{1}<\cdots<u_{m}<\infty$. Using the representation of $\gamma(u)$ in (3.54) and the arguments already presented above it is enough to prove the association of r.v.s

$$
\begin{array}{cccc}
\mathbb{1}\left(\tau_{1} \leq u_{1}\right), & \mathbb{1}\left(\tau_{2} \leq u_{1}\right), & \cdots, & \mathbb{1}\left(\tau_{k} \leq u_{1}\right) \\
\mathbb{1}\left(\tau_{1} \leq u_{2}\right), & \mathbb{1}\left(\tau_{2} \leq u_{2}\right), & \cdots, & \mathbb{1}\left(\tau_{k} \leq u_{2}\right), \\
\vdots & \vdots & \ddots & \vdots \tag{3.59}\\
\mathbb{1}\left(\tau_{1} \leq u_{m}\right), & \mathbb{1}\left(\tau_{2} \leq u_{m}\right), & \cdots, & \mathbb{1}\left(\tau_{k} \leq u_{m}\right),
\end{array}
$$

for any $k \geq 1$. Let us notice that $\mathbb{1}\left(\tau_{j} \leq u_{i}\right)=1-\mathbb{1}\left(\tau_{j}>u_{i}\right)$ and that functions $x \mapsto f_{i}(x)=\mathbb{1}\left(x>u_{i}\right), 1 \leq i \leq m$ are nondecreasing. Since association is preserved by nondecreasing transformations, the association of $\left\{\tau_{1}, \ldots, \tau_{m}\right\}$ implies the same property of $\left\{f_{i}\left(\tau_{j}\right), 1 \leq i \leq m, 1 \leq j \leq k\right\}$. By property BP_{1} of binary r.v.s in [10], $\left\{1-f_{i}\left(\tau_{j}\right), 1 \leq i \leq m, 1 \leq j \leq k\right\}$, or array 3.59) is associated as well, ending the proof of Theorem 3.

Remark 4. Association of γ or jump times $\left\{\tau_{j}\right\}$ can be easily verified in most examples considered in this paper. In particular,

- Poisson and generalized renewal processes (see Example 8) are associated since $\tau_{k}=U_{1}+\cdots+U_{k}$ is a sum of independent r.v.s.
- For a mixed Poisson process with $\gamma>0$ we have $\tau_{k}=\left(E_{1}+\cdots+E_{k}\right) / \zeta$, where $E_{j}, j \geq 1$ are independent exponentially distributed r.v.s. Thus, $\left\{\tau_{j}, j \geq 1\right\}$ is associated, the latter being nondecreasing transformations of independent r.v.s $\left\{1 / \zeta, E_{j}, j \geq 0\right\}$. The above observation extends to a general mixed Poisson process with $\gamma \geq 0$.
- Bernoulli seed in Example 4 is associated as it follows from the proof of Theorem 3. The binomial seed of the same example is also associated, being the sum of n independent associated processes, see ($\left[10\right.$, Property P_{2}). Alternatively, association of the binomial seed can be established by showing that the order statistics are nondecreasing functions of (independent uniformly distributed) sample variables.

Remark 5. Theorem 2 and the subsequent discussion refers to trawl processes with values in \mathbb{N} corresponding to seed process with positive jumps, in which case the limit α-stable process is completely asymmetric. Clearly, this result can be extended to some trawl processes with values in \mathbb{Z} and a symmetric limit distribution. Particularly, if $\gamma=\gamma^{+}-\gamma^{-}$is the difference of two independent copies of jump processes of the form (3.36), the corresponding trawl process in (1.1) also writes as the difference $X_{k}=X_{k}^{+}-X_{k}^{-}$of two independent trawl processes with values in \mathbb{N} and the limit distribution of $S_{n}=\sum_{k=1}^{n} X_{k}$ can be symmetric α-stable. More generally, consider two families $\left\{\gamma_{j}^{+}\right\},\left\{a_{j}^{+}\right\}$and $\left\{\gamma_{j}^{-}\right\},\left\{a_{j}^{-}\right\}$and the corresponding trawl processes $\left\{X_{k}^{+}\right\}$and $\left\{X_{k}^{-}\right\}$and partial
sum processes $S_{[n t]}^{+}$and $S_{[n t]}^{-}$. If the sequences $\left\{\gamma_{j}^{+}\right\}$and $\left\{\gamma_{j}^{-}\right\}$are mutually

$$
\begin{equation*}
n^{-\frac{1}{\alpha}}\left(S_{[n t]}^{+}-\mathbb{E} S_{[n t]}^{+}\right) \rightarrow_{\text {f.d.d. }} L_{\alpha}^{+}(t), \quad n^{-\frac{1}{\alpha}}\left(S_{[n t]}^{-}-\mathbb{E} S_{[n t]}^{-}\right) \rightarrow_{\text {f.d.d. }} L_{\alpha}^{-}(t) \tag{3.60}
\end{equation*}
$$

implies also

$$
\begin{equation*}
n^{-\frac{1}{\alpha}}\left(\left(S_{[n t]}^{+}-S_{[n t]}^{-}\right)-\mathbb{E}\left(S_{[n t]}^{+}-S_{[n t]}^{-}\right)\right) \rightarrow_{f . d . d .} L_{\alpha}(t) \tag{3.61}
\end{equation*}
$$

where the α-stable Lévy process L_{α} has the same distribution as the difference $L_{\alpha}^{+}-L_{\alpha}^{-}$of independent α-stable Lévy processes L_{α}^{+}and L_{α}^{-}.

Remark 6. Suppose we are able to strengthen the convergence in 3.60 to the functional convergence in the M_{1} topology (e.g. by applying Theorem 3).
Then we cannot automatically replace (3.61) with the functional convergence in the M_{1} topology due to the lack of continuity of addition in M_{1} (see e.g. [34]). However, the desired convergence can be achieved if we go deeper into the properties of M_{1}. Lemma 3 seems to be known, but we could not find any reference matching our framework. For the sake of completeness we decided to include the proof.

Lemma 3. Suppose that for each n, càdlàg processes Z_{n}^{\prime} and $Z_{n}^{\prime \prime}$ are independent and, as $n \rightarrow \infty$,

$$
\begin{equation*}
Z_{n}^{\prime}(t) \rightarrow_{\mathcal{D}\left(M_{1}\right)} \quad L^{\prime}(t), \quad Z_{n}^{\prime \prime}(t) \rightarrow_{\mathcal{D}\left(M_{1}\right)} \quad L^{\prime \prime}(t) \tag{3.62}
\end{equation*}
$$

where $L^{\prime}(t)$ and $L^{\prime \prime}(t)$ are homogeneous Lévy processes without Gaussian component. Then

$$
\begin{equation*}
Z_{n}^{\prime}(t)+Z_{n}^{\prime \prime}(t) \rightarrow_{\mathcal{D}\left(M_{1}\right)} L_{0}^{\prime}(t)+L_{0}^{\prime \prime}(t) \tag{3.63}
\end{equation*}
$$

where $L_{0}^{\prime}(t)$ and $L_{0}^{\prime \prime}(t)$ are independent copies of $L^{\prime}(t)$ and $L^{\prime \prime}(t)$, respectively.
Proof. Passing to an a.s Skorokhod representation (see e.g. [9) on the product space

$$
\left(D[0,1], M_{1}\right) \times\left(D[0,1], M_{1}\right)
$$

we may and do assume that for each $\omega \in \Omega$

$$
Z_{n}^{\prime}(\cdot, \omega) \rightarrow_{M_{1}} L_{0}^{\prime}(\cdot, \omega), \quad Z_{n}^{\prime \prime}(\cdot, \omega) \rightarrow_{M_{1}} L_{0}^{\prime \prime}(\cdot, \omega)
$$

with Z_{n}^{\prime} and $Z_{n}^{\prime \prime}$ independent for $n=1,2, \ldots$, and L_{0}^{\prime} and $L_{0}^{\prime \prime}$ being independent copies of L^{\prime} and $L^{\prime \prime}$. Here $\rightarrow_{M_{1}}$ denotes the convergence in $D[0,1]$ equipped with the M_{1} topology. We claim that it is enough to prove that almost surely

$$
\begin{equation*}
\operatorname{Disc}\left(L_{0}^{\prime}\right) \bigcap \operatorname{Disc}\left(L_{0}^{\prime \prime}\right)=\emptyset, \tag{3.64}
\end{equation*}
$$

where for a càdlàg function x

$$
\operatorname{Disc}(x)=\left\{t \in[0,1] ; \Delta x_{t}=x_{t}-x_{t-} \neq 0\right\}
$$

Indeed, we would have then by corollary 12.7.1 in 34 that almost surely

$$
Z_{n}^{\prime}(\cdot, \omega)+Z_{n}^{\prime \prime}(\cdot, \omega) \rightarrow_{M_{1}} L_{0}^{\prime}(\cdot, \omega)+L_{0}^{\prime \prime}(\cdot, \omega),
$$

what implies (3.63) .
Relation (3.64) follows from ($[6$, Proposition 5.3) and the fact that the Lévy measure of $\left(\bar{L}_{0}^{\prime}, L_{0}^{\prime \prime}\right)$ is concentrated on the coordinate axes, since in this case for almost all ω, the jumps satisfy

$$
\Delta L_{0}^{\prime}(\cdot, \omega)_{t} \cdot \Delta L_{0}^{\prime \prime}(\cdot, \omega)_{t}=0, \quad t \in[0,1]
$$

as desired.
Corollary 1. Let $\left\{X_{k}^{+}\right\}$and $\left\{X_{k}^{-}\right\}$be trawl processes built according to recipe (1.1), using systems $\left\{\gamma_{j}^{+}\right\},\left\{a_{j}^{+}\right\}$and $\left\{\gamma_{j}^{-}\right\},\left\{a_{j}^{-}\right\}$, respectively, and let $S_{[n t]}^{+}$and $S_{[n t]}^{-}$be the corresponding partial sum processes.
Suppose that $\left\{\gamma_{j}^{+}\right\}$and $\left\{\gamma_{j}^{-}\right\}$are mutually independent and both satisfy the assumptions of Theorem 3. Let L_{α}^{+}and L_{α}^{-}be the limiting α-stable Lévy processes for $n^{-\frac{1}{\alpha}}\left(S_{[n t]}^{+}-\mathbb{E} S_{[n t]}^{+}\right)$and $n^{-\frac{1}{\alpha}}\left(S_{[n t]}^{-}-\mathbb{E} S_{[n t]}^{-}\right)$, respectively. Then we have

$$
\begin{equation*}
n^{-\frac{1}{\alpha}}\left(\left(S_{[n t]}^{+}-S_{[n t]}^{-}\right)-\mathbb{E}\left(S_{[n t]}^{+}-S_{[n t]}^{-}\right)\right) \rightarrow_{\mathcal{D}\left(M_{1}\right)} \quad L_{\alpha}(t) \tag{3.65}
\end{equation*}
$$

where the α-stable Lévy process L_{α} has the same distribution as the difference $L_{\alpha}^{\prime}-L_{\alpha}^{\prime \prime}$ of independent copies of L_{α}^{+}and L_{α}^{-}.

Remark 7. The example of an ordinary moving average with summable coefficients shows that 3.60 may imply 3.61 without the assumption of independence of $S_{[n t]}^{+}$and $S_{[n t]}^{-}$(see e.g. [1], corollary 2.2). In the functional limit result given below we follow this general approach and obtain the functional convergence in the non-Skorohodian S topology (see [15]). We shall denote by $\rightarrow_{\mathcal{D}(S)}$ the convergence in distribution on the Skorohod space $D[0,1]$ equipped with the S topology.

Corollary 2. As in Corollary 11 we consider systems $\left\{\gamma_{j}^{+}\right\},\left\{a_{j}^{+}\right\},\left\{X_{k}^{+}\right\},\left\{S_{[n t]}^{+}\right\}$ and $\left\{\gamma_{j}^{-}\right\},\left\{a_{j}^{-}\right\},\left\{X_{k}^{-}\right\},\left\{S_{[n t]}^{-}\right\}$, each satisfying the conditions of Theorem 3, so that

$$
\begin{array}{lll}
n^{-\frac{1}{\alpha}}\left(S_{[n t]}^{+}-\mathbb{E} S_{[n t]}^{+}\right) & \rightarrow_{\mathcal{D}\left(M_{1}\right)} & L_{\alpha}^{+}(t), \\
n^{-\frac{1}{\alpha}}\left(S_{[n t]}^{-}-\mathbb{E} S_{[n t]}^{-}\right) & \rightarrow_{\mathcal{D}\left(M_{1}\right)} & L_{\alpha}^{-}(t) \tag{3.66}
\end{array}
$$

Allowing dependence between $\left\{\gamma_{j}^{+}\right\}$and $\left\{\gamma_{j}^{-}\right\}$we assume that for some càdlàg stochastic process K we have

$$
\begin{equation*}
n^{-\frac{1}{\alpha}}\left(\left(S_{[n t]}^{+}-S_{[n t]}^{-}\right)-\mathbb{E}\left(S_{[n t]}^{+}-S_{[n t]}^{-}\right)\right) \rightarrow_{\text {f.d.d. }} K(t) \tag{3.67}
\end{equation*}
$$

Then

$$
n^{-\frac{1}{\alpha}}\left(\left(S_{[n t]}^{+}-S_{[n t]}^{-}\right)-\mathbb{E}\left(S_{[n t]}^{+}-S_{[n t]}^{-}\right)\right) \rightarrow_{\mathcal{D}(S)} K(t)
$$

Proof. Let us notice that the S topology is sequential, but non-metric, and therefore standard (for the metric case) steps require some more subtle arguments. This is the reason why we provide exact reference to each step in the proof.
First, the topology M_{1} is stronger than S, hence (3.66) implies the uniform S-tightness of the corresponding processes (for details see [1], theorem 3.13). By the sequential continuity of addition in the S topology, the differences $n^{-\frac{1}{\alpha}}\left(\left(S_{[n t]}^{+}-S_{[n t]}^{-}\right)-\left(\mathbb{E} S_{[n t]}^{+}-\mathbb{E} S_{[n t]}^{-}\right)\right)$are also uniformly S-tight (see [1], proposition 3.16).
Thus we have uniform S-tightness and finite dimensional convergence (3.67), which imply the functional convergence in S (see [1], proposition 3.3).

Acknowledgements.. We are grateful to an anonymous referee for numerous helpful comments and suggestions.
This study began with Wilfredo Palma's question: how to define LRD integervalued models?
We also want to thank Vytaute Pilipauskaite for drawing our attention to the related works [2] and (3].
S.R.C. Lopes was partially supported by CNPq-Brazil and P. Doukhan by the MME-DII center of excellence (ANR-11-LABEX-0023-01). P. Doukhan also thanks the Universities UFRGS (Porto Alegre) and Nicolaus Copernicus (Toruń) for their support.

References

References

1] Balan, R., Jakubowski, A., and Louhichi, S. (2016). Functional convergence of linear processes with heavy-tailed innovations. J. Theoret. Probab., 29:491526.
[2] Barndorff-Nielsen, O. E., Benth, F. E., and Veraart, A. E. D. (2011). Recent advances in ambit stochastics. Preprint available at arXiv.org:1210.1354.
[3] Barndorff-Nielsen, O. E., Lunde, A., Shepard, N., and Veraart, A. E. D. (2014). Integer-valued trawl processes: a class of stationary infinitely divisible processes. Scand. J. Statist., 41:693-724.
[4] Billingsley, P. (1999). Convergence of Probability Measures. Wiley, NewYork.
[5] Christou, V. and Fokianos, K. (2014). Quasi-likelihood inference for negative binomial time series. J. Time Ser. Anal., 35:55-78.
[6] Cont, R. and Tankov, P. (2004). Financial Modellling with Jump Processes. Chapman \& Hall/CRC, Boca Raton.
[7] Dehling, H. and Philipp, W. (2002). Empirical process techniques for dependent data. In Dehling, H., Mikosch, T., and Sørensen, M., editors, Empirical Process Techniques for Dependent Data, pages 1-113. Birkhäuser, Boston.
[8] Doukhan, P., Lang, G., Surgailis, D., and Viano, M.-C. (2005). Functional limit theorem for the empirical process of a class of bernoulli shifts with long memory. J. Theoret. Probab., 18:109-134.
[9] Dudley, R. (1985). An extended wichura theorem, definitions of donsker class, and weighted empirical distributions. In Beck, A., Dudley, R., Hahn, M., Kuelbs, J., and Marcus, M., editors, Probability in Banach Spaces V, volume 1153 of Lecture Notes in Mathematics, pages 141-178. Springer, Boston.
[10] Esary, J. D., Proschan, F., and Walkup, D. W. (1967). Association of random variables, with applications. Ann. Math. Statist., 38:1466-1474.
[11] Giraitis, L., Koul, H. L., and Surgailis, D. (2012). Large Sample Inference for Long Memory Processes. Imperial College Press, London.
[12] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York.
[13] Ho, H.-C. and Hsing, T. (1996). On the asymptotic expansion of the empirical process of long memory moving averages. Ann. Statist., 24:992-1024.
[14] Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.
[15] Jakubowski, A. (1997). A non-Skorohod topology on the Skorohod space. Electron. J. Probab., 2-4:1-21.
[16] Kaj, I. and Taqqu, M. S. (2008). Convergence to fractional Brownian motion and to the telecom process: the integral representation approach. In Vares, M. E. and Sidoravicius, V., editors, An Out of Equilibrium 2, volume 60 of Progress in Probability, pages 383-427. Birkhäuser, Basel.
[17] Konstantopoulos, T. and Lin, S.-J. (1998). Macroscopic models for longrange dependent network traffic. Queueing Systems, 28:215-243.
[18] Kwapień, S. and Woyczyński, W. A. (1992). Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston.
[19] Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34:1-14.
[20] Leipus, R., Paulauskas, V., and Surgailis, D. (2005). Renewal regime switching and stable limit laws. J. Econometrics, 129:299-327.
[21] Leipus, R. and Surgailis, D. (2003). Random coefficient autoregression, regime switching and long memory. Adv. Appl. Probab., 35:737-754.
[22] Lifshits, M. (2014). Random Processes by Example. World Scientific, New Jersey.
[23] Louhichi, S. (2000). Weak convergence for empirical processes of associated sequences. Ann. I. H. P. ser $B, 36: 547-567$.
[24] Louhichi, S. and Rio, E. (2011). Functional convergence to stable Lévy motions for iterated random Lipschitz mappings. Electron. J. Probab., 16:24522480.
[25] Lyapunov, A. M. (1901). Sur un théorème du calcul des probabilités. Comptes rendus hebdomadaires des séances de l? Académie des Sciences de Paris, 132:126-128.
[26] Mikosch, T., Resnick, S., Rootzén, H., and Stegeman, A. (2002). Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab., 12:23-68.
[27] Pilipauskaite, V. and Surgailis, D. (2014). Joint temporal and contemporaneous aggregation of random-coefficient AR(1)-processes. Stoch. Process. Appl., 124:1011-1035.
[28] Pipiras, V., Taqqu, M. S., and Levy, B. (2004). Slow, fast and arbitrary growth conditions for renewal-reward processes when both the renewals and the rewards are heavy-tailed. Bernoulli, 10:121-163.
[29] Resnick, S. and Van den Berg, E. (2000). Weak convergence of high-speed traffic models. J. Appl. Prob., 37:1375-1397.
[30] Roueff, F., Samorodnitsky, G., and Soulier, P. (2012). Function-indexed empirical processes based on an infinite source Poisson transmission stream. Bernoulli, 18:783-802.
[31] Skorohod, A. V. (1956). Limit theorems for stochastic processes. Theory Probab. Appl., 1:261-290.
[32] Surgailis, D. (2004). Stable limits of sums of bounded functions of long memory moving averages with finite variance. Bernoulli, 10:327-355.
[33] Taqqu, M. S., Willinger, W., and Sherman, R. (1997). Proof of the fundamental result in self-similar traffic modeling. Computer Commun. Rev., 27:5-23.
[34] Whitt, W. (2002). Stochastic-Process Limits. An introduction to StochasticProcess Limits and Their Application to Queues. Springer, New York.
[35] Willinger, W., Paxon, V., Riedi, R. H., and Taqqu, M. S. (2003). Longrange dependence and data network traffic. In Doukhan, P., Oppenheim, G., and Taqqu, M. S., editors, Theory and Applications of Long-Range Dependence, pages 373-407. Birkhäuser, Boston.

[^0]: * Corresponding author

 Email addresses: paul.doukhan@u-cergy.fr (Paul Doukhan), adjakubo@mat.umk.pl (Adam Jakubowski), silvia.lopes@ufrgs.br (Silvia R. C. Lopes), donatas.surgailis@mii.vu.lt (Donatas Surgailis)

