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Abstract

We introduce a class of discrete time stationary trawl processes taking real or
integer values and written as sums of past values of independent ‘seed’ processes
on shrinking intervals (‘trawl heights’). Related trawl processes in continuous
time were studied in Barndorff-Nielsen et al. (2011, 2012).

In the case when the trawl function decays as a power function of the lag with
exponent 1 < α < 2, the trawl process exhibits long memory and its covariance
function is non-summable. We show that under general conditions on generic
seed process, the normalized partial sums of such trawl process may tend either
to a fractional Brownian motion or to an α-stable Lévy process. Moreover if the
trawl function admits a faster decay rate, then the classical Donsker’s invariance
principle holds true.
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1. Introduction

The present paper introduces a class of stationary random processes of the2

form

Xk =

∞∑
j=0

γk−j(aj), k ∈ Z (1.1)
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where γk = {γk(u), u ∈ R}, for k ∈ Z, are i.i.d. copies of a generic process4

γ = {γ(u), u ∈ R} tending to zero in probability as u → 0, and aj , j ≥ 0 is
a sequence of real numbers satisfying limj→∞ aj = 0. Throughout this paper,6

we use standard notation N = {0, 1, . . . }, Z = {0,±1, . . . }, R = (−∞,∞),
R+ = [0,∞), u ∧ v = min{u, v}. Clearly, (1.1) includes the class of causal8

moving averages Xk =

∞∑
j=0

ajξk−j in i.i.d. r.v.s {ξk, k ∈ Z}, which correspond

to a random line seed process γ = {γ(u) = ξ0u, u ∈ R}.10

In the sequel we call X = {Xk, k ∈ Z} in (1.1) the trawl process correspond-
ing to a seed process γ = {γ(u), u ∈ R} and a trawl (function) a = {aj , j ≥ 0}.12

The above terminology is borrowed from Barndorff-Nielsen et al. [3], where a
related class of trawl processes in continuous time was introduced. To be more14

specific, [3] consider stochastic integrals

Yt =

∫
R×(−∞,t]

1(x ∈ (0, dt−s))L(dx, ds), t ∈ R (1.2)

where L(dx,ds) is a homogeneous Lévy basis on R2 and {dt, t ∈ R+} is a deter-
ministic function satisfying certain conditions. In the case when this function
takes constant values on intervals t ∈ (j, j + 1], for j = 0, 1, . . . , the discretized
process {Yk, k ∈ Z} in (1.2) coincides with {Xk, k ∈ Z} in (1.1) corresponding
to the independent increment (Lévy) seed process and to the trawl function{

γ(u) =

∫
(0,u]×(0,1]

L(dx, ds), u ∈ R
}
,

{
aj = dt, t ∈ (j, j + 1], j ≥ 0

}
.

Clearly, an integer-valued seed process γ = {γ(u), u ∈ R} in (1.1) results in an16

integer-valued trawl process {Xk, k ∈ Z}, similarly as in the case of continuous-
time trawl processes of (1.2) studied in [3]. On the other hand, the discrete-time18

set-up allows us to consider very general seed processes γ which need not be
infinitely divisible or have independent increments as in the aforementioned20

work.
Barndorff-Nielsen et al. ([2], p. 22) note that trawl processes represent a flex-22

ible class of stochastic processes which can be used to model serially dependent
count data and other stationary time series, where the marginal distribution24

and the autocorrelation structure can be modelled independently from each
other. In particular, trawl processes can exhibit long memory or long-range26

dependence, which is usually associated with divergence of covariance series:∑
k∈Z
|Cov(X0, Xk)| = ∞, see [11], and which occurs in models (1.1) and (1.2)28

when the trawl function decays sufficiently slowly with the lag, see [3] and Sec-
tion 2 below. Fig. 6 in [3] shows sample paths and autocorrelation graphs of30

integer-valued trawl process given by (1.2) with dt = (1 − t)−1.03, exhibiting a
remarkably slow decay of the theoretical and the sample ACFs for lags up to32

1000.
The main question studied in this paper, which is also one of the basic ques-34

tions for statistical applications of trawl processes, is the rate of convergence

2



and the limit distribution of the sample mean. We prove that for trawl process36

with trawl function aj decaying as j−α (j → ∞), for 1 < α < 2 this limit dis-
tribution may be either α-stable or Gaussian. Moreover, a non-Gaussian stable38

limit is typical for integer valued seed (and trawl) process, while a Gaussian
limit occurs for ‘continuous’ seed processes, e.g. diffusions or stochastic volatil-40

ity processes. See Theorems 1 and 2 below for precise statements. We note that
our non-Gaussian result contradicts the conjecture in ([3], p. 708) about Gaus-42

sian partial sums limit for long-memory trawl process in (1.2). In particular, for
a standard Poisson seed process γ and 0 ≤ aj ∼ c0j

−α, 1 < α < 2, c0 > 0, we44

prove that the partial sums process S[nt] =

[nt]∑
j=1

(Xj−EXj), when normalized by

n1/α, tends to an α-stable Lévy process weakly in the Skorohod space equipped46

with M1-topology, see Theorem 3 below, and at the same time the covariance
Cov(n−HS[nt], n

−HS[ns]) ∼ (c/2)(t2H + s2H − |t− s|2H) approaches the covari-48

ance of fractional Brownian motion with variance ct2H , c > 0 and Hurst index
H = (3− α)/2 > 1/α. However if aj decay as O(j−α), α > 2 the Donsker50

functional central limit theorem holds for the partial sums process, with usual
Brownian limit and

√
n-normalization.52

A similar phenomenon (weak convergence of the partial sums process to
a Lévy stable process) occurs for a number of long-range dependent stationary54

processes with finite variance, see [28], [33], [17], [26], [35], [21], [32], [16], [27] and
the references therein. We note that in most of the literature this convergence56

is limited to finite-dimensional distributions. For M/G/∞ queue with heavy-
tailed activity periods, the adequate functional convergence was proved in [29].58

Since the limiting stable processes in these works have independent increments,
the above behavior is sometimes called ‘distributional short-range dependence’60

in contrast to ‘distributional long-range dependence’ occurring when the limit
of the partial sums process has dependent increments. See [7], [20]. See also [22]62

for a nice discussion of stable and Gaussian limits under long-range dependence.
The results of this paper concern linear functionals (partial sums) of trawl64

processes. For many statistical applications, limit theorems for nonlinear func-
tionals (e.g., quadratic forms, empirical processes) are needed. For some classes66

of long memory processes (which include the linear process and the infinite
source Poisson transmission model), these questions were addressed in [13], [8],68

[11], [30] and other works. A useful property of trawl processes corresponding to
Poisson and some other jump-type seed processes is association, see Section 3.3,70

which might facilitate the study of limit theorems for certain nonlinear func-
tionals. See [23] for weak convergence of empirical process under association.72

2. Discrete-time trawl process

2.1. Existence of discrete-time trawl process74

Let γk = {γk(u), u ∈ R}, k ∈ Z be i.i.d. copies of a (generic) seed pro-
cess γ = {γ(u), u ∈ R} with finite variance ρ(u) = Var(γ(u)) and mean76
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µ(u) = Eγ(u). A trawl a = {aj , j ≥ 0} is a deterministic sequence such that
limj→∞ aj = 0. We shall assume that78

Eγ(u) = O(Var(γ(u)))→ 0, u→ 0, (2.3)

and
∞∑
j=0

Var(γ(aj)) <∞. (2.4)

The trawl process X = {Xk, k ∈ Z} corresponding to trawl a = {aj , j ≥ 0}80

and seed process γ = {γ(u), u ∈ R} is defined in (1.1).
Let82

ρ(u, v) = Cov(γ(u), γ(v)), ρ(u) = ρ(u, u), u, v ∈ R (2.5)

denote the covariance and the variance of the seed process.

Proposition 1. Let conditions (2.3) and (2.4) be satisfied. Then the series in84

(1.1) converges a.s. and in mean square for any k ∈ Z. Moreover {Xk, k ∈ Z}

in (1.1) defines a stationary process with mean EXk =

∞∑
j=0

µ(aj) and covariance86

function

Cov(X0, Xk) =

∞∑
j=0

ρ(aj , aj+k), k ∈ N. (2.6)

Proof. The convergence of (1.1) is an easy consequence of the Kolmogorov three88

series theorem. Stationarity of (1.1) follows from the fact that the distribution
of {γk+h−j(aj), k ∈ Z, j ∈ N} does not depend on h ∈ Z. �90

Clearly, if the seed process takes integer values: γ(u) ∈ Z, u ∈ R, this
property also holds for the trawl process: Xk ∈ Z (∀ k ∈ Z). The following92

examples show that the class of trawl processes is very large.

Example 1 (Random line seed process). Let γ(u) = ξu, u ∈ R, where ξ is a r.v.94

with zero mean and variance σ2 < ∞. Then µ(u) = 0, ρ(u) = σ2u2, condition

(2.3) holds trivially and condition (2.4) translates to

∞∑
j=0

a2j < ∞. Then X in96

(1.1) is a moving-average:

Xk =

∞∑
j=0

ajξk−j , (2.7)

where {ξk, k ∈ Z} are i.i.d. copies of ξ.98

Example 2 (Brownian motion seed process). Let aj ≥ 0 and γ(u) = B(u), u ≥
0, where B is a Brownian motion with zero mean and covariance EB(u)B(v) =100

u ∧ v. Then (2.3) is trivially satisfied while (2.4) becomes

∞∑
j=0

aj < ∞. Then
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X in (1.1) is a stationary Gaussian process with zero mean and covariance102

Cov(X0, Xk) =

∞∑
j=0

aj ∧ ak+j , k ∈ N. Particularly, if aj = aj , a ∈ (0, 1)

then Cov(X0, Xk) = ak/(1− a) and finite-dimensional distributions X in (1.1)104

coincide with those of an AR(1) process written as a moving-average in (2.7)
with aj = aj and Gaussian i.i.d. innovations ξk ∼ N (0, σ2), where σ2 = 1 + a.106

Example 3 (Poisson and mixed Poisson seed processes). Let γ(u) = P (u),
u ∈ R+, where P is a Poisson process with mean µ(u) = u, covariance ρ(u, v) =

Cov(P (u), P (v)) = u ∧ v and aj ≥ 0,

∞∑
j=0

aj < ∞. Then (2.3) and (2.4) are

satisfied since µ(u) = ρ(u) and X in (1.1) is a stationary process with mean

EXk =

∞∑
j=0

aj and the same covariance as in Example 2. Moreover, Xk takes

integer values and has a Poisson marginal distribution with mean EX0.
The above example can be generalized by considering a mixed Poisson seed
process γ(u) = P (uζ), where P is as above and ζ ≥ 0 is a random variable with
Eζ <∞, independent of P . Particularly, [5] proved that when ζ is exponentially
distributed then P (uζ) has negative binomial marginal distribution. The case of
binary r.v. ζ ∈ {0, 1} corresponds to the so-called zero-inflated Poisson process,
see [19]. Note that for γ(u) = P (uζ)

µ(u) = uEζ and ρ(u, v) = (u ∧ v)Eζ + uvVar(ζ).

Example 4 (Bernoulli and binomial seed processes). The Bernoulli seed process
is defined by b(u) = 1(U ≤ u), where U ∼ U [0, 1] is a uniformly distributed
random variable. Thus, for γ(u) = b(u)

µ(u) = u, ρ(u, v) = u ∧ v − uv.

The binomial seed γ(u) = b(u;n), u ≥ 0 is defined as the sum of n independent
Bernoulli seeds: b(u;n) =

∑n
j=1 bj(u), where bj(u) = 1(Uj ≤ u), j = 1, . . . , n108

are independent Bernoulli processes. Clearly, Eb(u;n) = nu and ρ(u, v) =
Cov(b(u;n), b(v;n)) = n(u ∧ v − uv).110

Further examples of trawl processes can be found in Sections 2.2 (Example 5),
3.1 (Examples 6-7) and 3.2 (Example 8).112

2.2. Second order properties of discrete-time trawl process

The variance Var(Xk) of trawl process X in (1.1) depends both on trawl114

a = {aj} and on covariance function ρ(u, v) of seed process, see (2.6). In order
to characterize the existence of X in terms of a = {aj} alone, it is convenient to116

impose a linear growth condition on the variance ρ(u) = Var(γ(u)) at the origin
u = 0:118

ρ(u) = O(|u|), u→ 0. (2.8)
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Under (2.8), condition (2.4) is equivalent to summability of the trawl sequence:
120

∞∑
j=0

|aj | <∞. (2.9)

Clearly, the trawl processes in Examples 2-4 satisfy (2.8) provided the seed
processes in these examples are suitably extended to negative u < 0.122

The following proposition shows that trawl processes with seed process in these
examples exhibit a rich covariance structure.124

Proposition 2. Let r(k) ≥ 0, k ∈ N, limk→∞ r(k) = 0 be a convex monotone
function, viz., r(k)−r(k+1) ≥ 0, r(k+2)−2r(k+1)+r(k) ≥ 0, for k ∈ N. Then126

r(k) = Cov(X0, Xk), k ∈ N, where {Xk} is the stationary trawl process in (1.1)
with trawl function aj = r(j)−r(j+1) ≥ 0 and a seed process γ = {γ(u), u ≥ 0}128

such that Eγ(u) = O(u), ρ(u, v) = Cov(γ(u), γ(v)) = u ∧ v, u, v ≥ 0.

Proof. Since ρ(u) = u, aj ≥ 0 and

∞∑
j=0

aj = r(0) < ∞, so conditions (2.8) and130

(2.9) guaranteeing the existence of the corresponding trawl process (1.1) are
satisfied. Then by (2.6) and monotonicity of aj we have that Cov(X0, Xk) =132

∞∑
j=k

aj = r(k). �

Example 5. Covariance function of ARFIMA(0, d, 0) process with parameter134

0 < d < 1/2 is given by

r(j) = r(0)

j∏
k=1

k − 1 + d

k − d
=

Γ(j + d)Γ(1− 2d)

Γ(j − d+ 1)Γ(d)Γ(1− d)

∼ Γ(1− 2d)

Γ(d)Γ(1− d)
j−1+2d, j →∞, (2.10)

r(0) = Γ(1 − 2d)/Γ2(1 − d), see e.g. ([11], (7.2.9)). Then (2.10) satisfies the

conditions of Proposition 2: r(j) − r(j + 1) = r(j)
(
1 − j + d

j + 1− d
)

= (1 −

2d)r(j)/(j+1−d) > 0 and r(j)−2r(j+1)+r(j+2) = 2(1−d)(1−2d)r(j)/(j+
1 − d)(j + 2 − d) > 0, for j ∈ N. Particularly, trawl process with Poisson seed
process γ(u) = P (u) in Example 3 and trawl aj = r(j) − r(j + 1) defined
by (2.10) presents an example of integer-valued process with Poisson marginal
distribution and ARFIMA(0, d, 0) covariance function. Note that the above
trawl decays as j−2(1−d) with the exponent 2(1− d) ∈ (1, 2), viz.,

aj = r(j)
1− 2d

j + 1− d
∼ Γ(2− 2d)

Γ(d)Γ(1− d)
j−2+2d, j →∞.

Denote by Sn =

n∑
k=1

Xk the partial sums process of the trawl process in (1.1).136

The following proposition obtains power-law decay of the covariance of the trawl
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process and the asymptotics of the variance of Sn under general conditions on138

the trawl function and on the seed process. Contrary to Proposition 2 and
Example 5, these conditions do not require monotonicity of aj . Write un � vn140

for limn→∞ un/vn =∞.

Proposition 3. Consider the stationary trawl process {Xk} in (1.1). Let con-142

ditions (2.3), (2.8) and (2.9) be satisfied.

(i) In addition, assume144

ρ(u, v) = (|u| ∧ |v|)(1 + o(1)), as u, v → 0, uv > 0. (2.11)

and

aj = c0j
−α(1 + o(1)), j →∞ (∃ 1 < α < 2, c0 6= 0). (2.12)

Then146

Cov(X0, Xk) = c1k
1−α(1 + o(1)), k →∞ (2.13)

and

Var(Sn) =

n∑
k,l=1

Cov(Xk, Xl) ∼ c2 n
3−α � n, n→∞, (2.14)

where c1 = |c0|/(α− 1), c2 = 2c1/(2− α)(3− α).148

(ii) In addition, assume

|ρ(u, v)| ≤ C(|u| ∧ |v|), u, v ∈ R, (2.15)

and150
∞∑
j=1

j|aj | < ∞. (2.16)

Then
∞∑
k=1

|Cov(X0, Xk)| < ∞ (2.17)

and152

Var(Sn) = n
∑
|k|<n

(
1−

∣∣∣k
n

∣∣∣)Cov(Xk, X0) ∼ σ2 n, (2.18)

where σ2 =
∑
k∈Z

Cov(X0, Xk).

Remark 1. (i) Note (2.11) and (2.12) imply (2.8) and (2.9), respectively. As154

noted above, the latter conditions together with (2.3) guarantee (2.4) and the
existence of stationary trawl process (1.1) in Proposition 1.156

(ii) In view of (2.13) and (2.10), the parameter d = 1−α/2 ∈ (0, 1/2) in Propo-
sition 3 (i) can be identified as the long memory parameter of the trawl process158

X. Statistical estimation of this parameter presents considerable interest. We
plan to study this question in a future work.160
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Proof. (i) Without loss of generality, let c0 > 0 in (2.12); the proof in the case
c0 < 0 is analogous. Then aj > 0, and ak+j > 0 hold for all k ≥ 1 and j > j0,162

where j0 is large enough. Moreover, for any ε > 0 there exists j0 < jε <∞ such
that164

aj+k < aj , for all jε < j < k/2ε, and k ≥ 2εjε. (2.19)

Indeed, by (2.12) we have that for any ε > 0 there exists jε > j0 > 0 such that
aj > c0j

−α(1− ε), ak+j < c0(j + k)−α(1 + ε) and therefore(aj+k
aj

) 1
α

<
j

j + k

(1 + ε

1− ε

) 1
α

, ∀ j > jε, ∀ k ≥ 1.

Since ((1 + ε)/(1− ε)) 1
α < 1 + 2ε if ε > 0 is small enough, relation (2.19) follows

since j/(j + k) ≤ 1/(1 + 2ε) for 1 ≤ j < k/2ε.
Consider (2.13). For sufficiently large k (k > 2εjε) split kα−1Cov(X0, Xk) =∑∞
j=0 k

α−1 ρ(aj , ak+j) =
∑3
i=1 Ii,k, where

I1,k =
∑

0≤j≤jε

. . . , I2,k =
∑

jε<j<k/2ε

. . . , I3,k =
∑

j≥k/2ε

. . . .

By (2.12) and Cauchy-Schwartz inequality, for any fixed ε > 0 and 1 ≤ j ≤ jε,

|ρ(aj , ak+j)| ≤ ρ(aj)
1
2 ρ(ak+j)

1
2 ≤ C|ak+j |

1
2 ≤ Ck−α2 , k →∞

implying

|I1,k| ≤ Ckα−1k−
α
2 = O(k−(1−

α
2 )) = o(1), k →∞.

Next, by (2.11) and (2.12), |ρ(aj , aj+k)| ≤ C|aj | ∧ |aj+k| ≤ Cj−α, (∀ j, k ≥ 1)
and therefore

I3,k ≤ Ckα−1
∑

j≥k/2ε

j−α ≤ Cεα−1

can be made arbitrarily small uniformly in k ≥ 1 by choosing ε > 0 small
enough. Finally, by (2.19) and (2.11),166

I2,k = c0k
α−1

∑
jε<j<k/2ε

1 + δj,k
(k + j)α

, (2.20)

where supj≥1 |δj,k| = 0 as k →∞. Note that for each ε > 0, as k →∞

Jk(ε) := kα−1
∑

jε<j<k/2ε

(k + j)−α =
1

k

∑
jε
k <

j
k<1/2ε

1(
1 + j

k

)α
→

∫ 1/2ε

0

dx

(1 + x)α
=

1

α− 1

(
1− (2ε)α−1

)
. (2.21)

According to (2.20) and (2.21), for any δ > 0 and any ε0 > 0 one can find168

0 < ε < ε0 and K0 > 0 such that |I2,k − c0/(α − 1)| < δ holds for all k > K0.
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This proves (2.13) while (2.14) follows from (2.13), see e.g. ([11], Proposition170

3.3.1).

(ii) It suffices to prove (2.17) since (2.18) follows from (2.17) and the dominated172

convergence theorem. According to (2.6), (2.15), (2.16),

∞∑
k=1

|Cov(X0, Xk)| ≤ C

∞∑
k=1

∞∑
j=0

|aj | ∧ |aj+k|

≤ C

∞∑
k=1

∞∑
j=0

|aj+k| ≤ C

∞∑
k=1

k|ak| < ∞.

Proposition 3 is proved. �174

3. Partial sums limits of trawl processes

This section discusses partial sums limits for trawl processes in (1.1) sat-176

isfying the conditions of Proposition 3. Particularly, we detail conditions on
the seed process {γ(u), u ∈ R} which guarantee that the partial sums pro-178

cess of the trawl process {Xk} with regularly decaying trawl (2.12) tends to
either a Gaussian process (fractional Brownian motion with Hurst parameter180

H = (3− α)/2 ∈ (1/2, 1)) or to an α-stable Lévy process.
The following decomposition of the partial sums process as a sum of independent182

random variables is crucial for the proofs of Theorem 1 and Theorem 2.

Lemma 1 (Decomposition). Let {Xk} be as in (1.1). Then Sn =

n∑
k=1

Xk =184

n∑
s=−∞

Zs,n, where

Zs,n =

n∑
k=1∨s

γs(ak−s), −∞ < s ≤ n (3.22)

are independent r.v.s.186

The proof of Lemma 1 follows trivially from the definition of Xk and the in-
dependence of the sequence (γs)s∈Z. Write →f.d.d. for the weak convergence of188

finite-dimensional distributions and →D(J1) and →D(M1) for the weak conver-
gence of random elements in the Skorohod space D[0, 1] endowed with the J1-190

and M1-topologies, respectively. For the definition of these topologies, see [31],
[4], [24].192

Denote |µ|2+δ(u) = E|γ(u)|2+δ the absolute (2 + δ)-moment of the seed process.

3.1. Gaussian limit of the partial sums process194

Theorem 1. Consider a trawl process {Xk} defined in (1.1).
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(i) Assume µ(u) = Eγ(u) = 0, (2.11), (2.12) and there exists δ > 0 with196

|µ|2+δ(u) = O(|u|
2+δ
2 ), u→ 0. (3.23)

Then
1

nH
S[nt] →D(J1)

√
c2BH(t), H =

3− α
2

, (3.24)

where BH is a fractional Brownian motion with variance EB2
H(t) = t2H198

and c2 is defined in (2.14).

(ii) Assume µ(u) = Eγ(u) = 0, (2.15), (2.16), and (3.23).200

Then if also σ2 =
∑
k∈Z

Cov(X0, Xk) 6= 0, we obtain:

1√
n
S[nt] →f.d.d. σ B(t), (3.25)

where B is a Brownian motion with variance EB2(t) = t.202

In addition, if

∞∑
k=1

√
|ak| < ∞, then the finite dimensional convergence

in (3.25) can be replaced by →D(J1).204

(iii) All statements in (ii) remain valid if (3.23) is replaced by

|µ|2+δ(u) = O(u) (u→ 0), and

∞∑
j=0

|aj |
1

2+δ <∞ (∃ δ > 0). (3.26)

Proof. We use the decomposition Lemma 1 and its notations. This is essential206

to use the Lindeberg theorem.
(i) Consider the convergence of one-dimensional distributions:208

1√
n3−α

Sn →law N (0, c2). (3.27)

In view of (2.14) and Lemma 1, relation (3.27) follows by Lindeberg’s theorem
provided210

Ln :=

n∑
s=−∞

E|Zs,n|2+δ = o
(
n

(3−α)(2+δ)
2

)
. (3.28)

The Lyapunov condition (3.28) seems to have been introduced quite early in
the literature, see [25] or more recently ([12], theorem 3.5). By Minkowski’s212

inequality and assumptions (2.9) and (3.23) we obtain

E|Zs,n|2+δ ≤

(
n∑

k=1∨s

(E|γ(ak−s)|2+δ)
1

2+δ

)2+δ

(3.29)

≤ C

(
n∑

k=1∨s

|ak−s|
1
2

)2+δ

≤ C

(
n∑

k=1∨s

|k − s|−
α
2

+

)2+δ

10



(with |`|+ = ` ∨ 0) and therefore Ln ≤ C(L−n + L+
n ), where214

L−n =

0∑
s=−∞

(
n∑
k=1

|k − s|−
α
2

+

)2+δ

=

∞∑
s=0

(
n∑
k=1

(k + s)−
α
2

)2+δ

,

L+
n =

n∑
s=1

(
n∑
k=1

k−
α
2

)2+δ

= n

(
n∑
k=1

k−
α
2

)2+δ

.

Here, L+
n = O

(
n
(
n1−

α
2 )2+δ

)
= o
(
n

(3−α)(2+δ)
2

)
. The same relation for L−n follows

from216

L−n ≤
∫ ∞
0

dx

(∫ n

0

(x+ y)−
α
2 dy

)2+δ

= cn
(
n1−

α
2

)2+δ
, with

c =

∫ ∞
0

dx

(∫ 1

0

(x+ y)−
α
2 dy

)2+δ

<∞.

This proves (3.28) and the one-dimensional convergence in (3.27).
Finite-dimensional convergence in (3.24) follows similarly using Cramér-Wold218

device. Finally, the tightness in D(J1) of the partial sums process in (3.24) fol-
lows by Kolmogorov’s criterion and from property (2.14) (see, e.g. [11], Propo-220

sition 4.2.2). This proves part (i).

(ii) Again, it suffices to prove the convergence of one-dimensional distributions:222

n−1/2Sn →law N (0, σ2). (3.30)

By writing Sn as in (3.22) and using Lindeberg’s theorem relation (3.30) follows224

from

Ln =

n∑
s=−∞

E|Zs,n|2+δ = o
(
n

2+δ
2

)
. (3.31)

Using Minkowski’s inequality and assumptions (3.23) and (2.16) similarly as in226

part (i) we obtain

E|Zs,n|2+δ ≤ C
( n∑
k=1∨s

|ak−s|
1
2

)2+δ
(3.32)

≤ C
( n∑
k=1∨s

|(k − s)ak−s|
) 2+δ

2
( n∑
k=1∨s

(k − s)−1
) 2+δ

2

≤ C
( n∑
k=1∨s

(k − s)−1
) 2+δ

2

. (3.33)

and hence228

n∑
s=−n

E|Zs,n|2+δ ≤ Cn(log n)
2+δ
2 = o

(
n

2+δ
2

)
,

−n∑
s=−∞

E|Zs,n|2+δ ≤ C

∞∑
s=n

( n∑
k=1

1

k + s

) 2+δ
2 ≤ C

∞∑
s=n

(ns−1)
2+δ
2 ≤ Cn = o

(
n

2+δ
2

)
,

11



proving (3.31) and (3.30). To show the last statement of (ii), the tightness in
D[0, 1], it suffices to prove the bound230

E|Sn|2+δ ≤ Cn
2+δ
2 , (3.34)

see ([11], Proposition 4.4.4). By Rosenthal’s inequality,

E|Sn|2+δ ≤ C
( n∑
s=−∞

(E|Zs,n|2+δ)
2

2+δ

) 2+δ
2

.

Using (3.32) and
∑∞
k=1 |ak|

1
2 <∞, we get max|s|≤n E|Zs,n|2+δ < C and

−n∑
s=−∞

(E|Zs,n|2+δ)
2

2+δ ≤ C

∞∑
s=n

( n∑
k=1

|ak+s|
1
2

)2
≤ C

n∑
k1,k2=1

∞∑
s=n

|ak1+s|
1
2 |ak2+s|

1
2 ≤ Cn. (3.35)

This proves (3.34) and part (ii), too.232

(iii) Similarly as in (3.29) and using (3.26) we get

E|Zs,n|2+δ ≤ C
( n∑
k=1∨s

|ak−s|
1

2+δ

)2+δ
≤ C

n∑
k=1∨s

|ak−s|
1

2+δ ≤ C

for any −∞ < s ≤ n and hence

−n∑
s=−∞

E|Zs,n|2+δ ≤ C

∞∑
s=n

n∑
k=1

|ak+s|
1

2+δ ≤ Cn,

−n∑
s=−∞

(E|Zs,n|2+δ)
2

2+δ ≤ C

∞∑
s=n

( n∑
k=1

|ak+s|
1

2+δ
)2 ≤ Cn,

as in (3.35). Hence, (3.31) and (3.34) follow, proving part (iii) and completing234

the proof of Theorem 1. �

Remark 2. The crucial condition for Gaussian partial sums limit under long-
range dependence assumption (2.12) in Theorem 1 (i) is (3.23). Clearly this con-
dition is satisfied for Brownian motion γ(u) = B(u), in which case |µ|2+δ(u) =

E|B(u)|2+δ = |u| 2+δ2 E|B(1)|2+δ. On the other hand, condition (3.23) is not
satisfied for most jump processes. Particularly, if γ(u) = P (u) − u, u ≥ 0 is a
centered Poisson process with intensity EP (u) = u, then

|µ|2+δ(u) = ue−u|1− u|2+δ +O(u2+δ + u2) ∼ u, u→ 0,

and (3.23) fails, but the first condition in (3.26) is satisfied. In particular, in236

the case of Poisson seed process, the trawl process satisfies Donsker’s theorem
if the trawl tends fast enough to 0 so that (3.26) holds.238
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Let us present further examples of seed processes satisfying the conditions in
Theorem 1.240

Example 6 (Geometric centered Brownian motion). Set γ(u) = eB(u)−u/2 −
1, u ≥ 0, where B is a standard Brownian motion as above. We have Eγ(u) = 0242

and, if u ≤ v,

ρ(u, v) = E exp{B(u) +B(v)− u+ v

2
} − 1

= exp
{(1

2
E
(
B(u) +B(v)

))2
− u+ v

2

}
− 1

= exp
{

(
1

2
(u+ v + 2u)− u+ v

2

}
− 1

= eu − 1

= u ∧ v +O
(
(u ∧ v)2

)
, u ∧ v → 0.

Therefore (2.11) is satisfied. We also have by Taylor’s expansion that |µ|4(u) =244

E
∣∣eB(u)−u/2 − 1

∣∣4 = e6u − 4e3u + 6eu − 3 = O(u2), u → 0 so that (3.23) is
satisfied with δ = 2.246

Example 7 (Diffusion process). Let

γ(u) =

∫ u

0

b(v)dB(v), u ∈ R+,

where B is a Brownian motion, and (b(v))v∈R+
is a random predictable pro-

cess with limv→0 Eb2(v) = C > 0. Then ρ(u) =
∫ u
0
Eb2(v)dv ∼ Cu (u→ 0) and248

ρ(u, v) = ρ(u), 0 ≤ u ≤ v so that (2.11) is satisfied. Moreover, if E|b(v)|2+δ ≤ C
then by the moment inequality for Brownian integrals (see, e.g. [18], Theo-250

rem 9.9.2)

|µ|2+δ(u) ≤ CE
(∫ u

0

b2(v)dv
) 2+δ

2

≤ C
(∫ u

0

E|b(v)|2+δdv
)(∫ u

0

1 dv
) 2+δ

2 −1 ≤ Cu
2+δ
2 ,

hence assumption (3.23) holds, too.252

3.2. Stable limit of the partial sums process

This subsection studies integer-valued trawl processes with seeds given by a254

general point process. We first discuss conditions on this point process guaran-
teeing the existence and stationarity of the trawl process. We assume that seed256

process γ =
{
γ(u), u ≥ 0

}
is a piecewise constant nondecreasing process

γ(u) =

∞∑
k=0

k · 1(τk ≤ u < τk+1) (3.36)
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starting at γ(0) = 0 with unit jumps at random points 0 = τ0 < τ1 ≤ τ2 ≤ · · · ≤258

∞. In particular, if τk < τk+1 = · · · = ∞, the number of jumps of γ does not
exceed k and the process is bounded by k on (0,∞). We shall assume that the260

distribution of the first jump-point τ1 > 0 has a bounded probability density
θ(·):262

P(0 < τ1 ≤ u) =

∫ u

0

θ(y)dy, and lim
u→0

θ(u) = 1. (3.37)

Moreover, we shall suppose that there exists δ > 2(α− 1) such that

Eγ(u)2+δ < ∞, ∀ u > 0, (3.38)

Eγ(u)21(τ2 ≤ u) = O(u2), u→ 0. (3.39)

Remark 3. The second condition in (3.37) can be replaced by limu→0 θ(u) =264

C > 0 without loss of generality. Conditions (3.37)-(3.39) are very general
and are satisfied by many jump processes, see Example 8 below. Note that266

conditions (3.37)-(3.39) as well as (3.40) given below, refer to the first two
jump-times 0 < τ1 < τ2 and do not involve subsequent jumps τk, for k ≥ 3. As268

shown below, these conditions imply the existence and stationarity of the trawl
process for general trawls.270

Observe that (τ1 ≤ u) = (γ(u) ≥ 1), (τ2 ≤ u) = (γ(u) ≥ 2) and therefore an
alternative way to set condition (3.39) is Eγ2(u)1(γ(u) > 1) = O(u2), as u→ 0.272

Proposition 4. (i) For the seed process γ in (3.36), conditions (3.37)-(3.39)
imply the assumptions (2.3) and (2.4). In particular, the corresponding trawl274

process in (1.1) is stationary, has finite variance and the covariance in (2.6),
for any trawl {aj ≥ 0} satisfying the summability condition in (2.9).276

(ii) In addition to (3.37)-(3.39), assume that

Eγ(v)1(τ1 ≤ u, τ2 ≤ v) = o(u), 0 ≤ u ≤ v → 0. (3.40)

Then (2.11) is satisfied. As a consequence, for regularly decaying trawl as in278

(2.12) the corresponding stationary trawl process {Xk} in (1.1) enjoys the long
memory properties in (2.13) and (2.14).280

Proof. (i) We shall prove that µ(u) and from see (3.37), ρ(u) can be approxi-
mated by P(τ1 ≤ u) = u(1 + o(1)) as u→ 0.282

From (3.36) we have

1(τ1 ≤ u) ≤ γ(u) ≤ 1(τ1 ≤ u) + γ(u)1(τ2 ≤ u) (3.41)

and hence

P(τ1 ≤ u) ≤ µ(u) ≤ P(τ1 ≤ u) + Eγ(u)1(τ2 ≤ u).

From (3.37), P(0 < τ1 ≤ u) = u(1 + o(1)) and from (3.39),

Eγ(u)1(τ2 ≤ u) ≤ Eγ2(u)1(τ2 ≤ u) = O(u2).
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Therefore,284

µ(u) = u(1 + o(1)) +O(u2) = u(1 + o(1)), u→ 0. (3.42)

Similarly, for the second moment µ2(u) = Eγ2(u) from (3.41), (3.37), (3.39) we
obtain

P(τ1 ≤ u) ≤ µ2(u) ≤ P(τ1 ≤ u) + 2Eγ(u)1(τ2 ≤ u) + Eγ2(u)1(τ2 ≤ u),

implying µ2(u) = u(1 + o(1)) +O(u2) = u(1 + o(1)) (u→ 0) and

ρ(u) = µ2(u)− µ2(u) = u(1 + o(1)), u→ 0. (3.43)

Clearly, (3.42) and (3.43) imply (2.3) and (2.8). As noted in beginning of286

Section 2.2, (2.8) implies (2.4) for any trawl satisfying (2.9), and the existence
and stationarity of the corresponding trawl process {Xk}.288

(ii) Consider (2.11). Since

ρ(u, v) = Eγ(u)γ(v)−µ(u)µ(v) = Eγ(u)γ(v)−uv(1+o(1)) = Eγ(u)γ(v)+o(u∧v),

as 0 < u ≤ v → 0, condition (2.11) follows from

Eγ(u)γ(v) = u(1 + o(1)), 0 < u ≤ v → 0. (3.44)

From (3.41) for 0 < u ≤ v we obtain290

P(τ1 ≤ u) ≤ Eγ(u)γ(v)

≤ P(τ1 ≤ u) + Eγ(u)1(τ2 ≤ u) + Eγ(v)1(τ1 ≤ u, τ2 ≤ v)

+Eγ(u)γ(v)1(τ2 ≤ u)

where

Eγ(u)γ(v)1(τ2 ≤ u) ≤ (Eγ2(u)1(τ2 ≤ u))
1
2 (Eγ2(v))

1
2 ≤ Cu(Eγ2(v))

1
2

and Eγ2(v) = µ2(v) = O(v), see (3.37), (3.39). Hence from (3.40) we have that

Eγ(u)1(τ2 ≤ u) + Eγ(v)1(τ1 ≤ u, τ2 ≤ v) + Eγ(u)γ(v)1(τ2 ≤ u) = o(u)

implying (3.44) and (2.11), too. �

Theorem 2. Assume that aj ≥ 0 satisfy the regular decay condition in (2.12)292

with exponent 1 < α < 2 and that the seed process in (3.36) satisfies conditions
(3.37)-(3.39). Then294

n−
1
α (S[nt] − ES[nt]) →f.d.d. Lα(t), (3.45)

where Lα(t), t ≥ 0 is a homogeneous α-stable Lévy process with characteristic
function296

EeizLα(t) = exp

{
−t|z|α c0Γ(2− α)

1− α

(
cos(π

α

2
)− i · sgn(z) sin(π

α

2
)
)}

, z ∈ R.

(3.46)
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Proof. Denote

Z =

∞∑
j=0

γ(aj), Z
∗ =

∞∑
j=0

1(γ(aj) ≥ 1) = #{j ≥ 0 : aj ≥ τ1}, Z∗∗ = Z − Z∗.

(3.47)
Then Z ≥ Z∗ ≥ 0 and the series for Z in (3.47) converges a.s. in view of (3.42)
and has finite mean:

EZ =

∞∑
j=0

µ(aj) ≤ C
∞∑
j=0

aj <∞.

We shall prove that the tail d.f. of r.v. Z decays regularly with exponent298

α ∈ (1, 2):
P(Z > y) = c0 y

−α(1 + o(1)), as y →∞. (3.48)

Relation (3.48) follows from (3.47) and300

P(Z∗ > y) = c0 y
−α(1 + o(1)), and P(Z∗∗ > y) = o(y−α), as y →∞. (3.49)

Consider the first relation in (3.49). Since P(Z∗ > k−1) ≥ P(Z∗ > y) ≥ P(Z∗ >
k) when k−1 ≤ y ≤ k, it suffices to show (3.49) for y = k−1, or the probability302

P(Z∗ ≥ k), k ≥ 1. As noted in the proof of Proposition 3, for any ε > 0 there
exists j0 > 0 such that c0(1− ε)j−α < aj < c0(1 + ε)j−α, ∀ j ≥ j0. Clearly, for304

any k ≥ 1 we have P(Z− ≥ k + j0) ≤ P(Z∗ ≥ k) ≤ P(Z+ ≥ k − j0), where

Z+ =
∑∞
j=j0

1(τ1 ≤ c0(1 + ε)j−α) = #{j ≥ j0 : τ1 ≤ c0(1 + ε)j−α},
Z− =

∑∞
j=j0

1(τ1 ≤ c0(1− ε)j−α) = #{j ≥ j0 : τ1 ≤ c0(1− ε)j−α}.

According to (3.37), as k →∞,

P(Z+ ≥ k − j0) = P(τ1 < c0(1 + ε)k−α) =

∫ c0(1+ε)k
−α

0

θ(y)dy ∼ c0(1 + ε) k−α

and, similarly,

P(Z− ≥ k + j0) = P(τ1 < c0(1− ε)(k + 2j0 − 1)−α) ∼ c0(1− ε) k−α.

Therefore, c0(1 − ε) ≤ lim inf kαP(Z∗ ≥ k) ≤ lim sup kαP(Z∗ ≥ k) ≤ c0(1 + ε),306

where ε > 0 is arbitrary small, proving the first fact in (3.49). To prove the
second fact in (3.49), note Z∗∗ ≤

∑∞
j=0 γ(aj)1(aj ≥ τ2) and then by (3.39) and308

Minkowski’s inequality we obtain

E
1
2 (Z∗∗)2 ≤

∞∑
j=0

(
Eγ2(aj)1(aj ≥ τ2)

) 1
2 ≤ C

∞∑
j=0

|aj | < ∞

proving (3.49) and hence (3.48) as well. In turn, (3.48) implies that the dis-310

tribution of r.v. Z belongs to the domain of attraction of asymmetric α-stable
law, viz.,312

n−
1
α

[nt]∑
k=1

(Zk − EZk) →f.d.d. Lα(t), (3.50)
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where Zk =

∞∑
j=0

γk(aj), k ∈ Z are i.i.d. copies of r.v. Z in (3.47) and Lα is the

α-stable Lévy process in (3.46). See e.g. ([14], Theorem 2.6.7).314

We now use the decomposition Lemma 1 and its notations. The convergence in
(3.45) will follow from (3.50) if we show that the partial sums process in (3.45)316

can be approximated by the partial sums process in (3.50), in the sense that

E|Sn − S̃n| = o(n
1
α ), where S̃n =

n∑
k=1

Zk. (3.51)

Indeed,
n−

1
α (S[nt] − ES[nt]) = n−

1
α (S̃[nt] − ES̃[nt]) +R[nt],

where Rn = n−
1
α (Sn − S̃n) + n−

1
αE(S̃n − Sn) = oP(1) according to (3.51). We

have S̃n − Sn = R′n −R′′n, where

R′n =
∑

1≤s≤n

∑
j>n−s

γs(aj), R′′n =
∑
s≤0

∑
1≤k≤n

γs(ak−s),

then R′n ≥ 0, R′′n ≥ 0.318

Using (3.42) and (2.12) we obtain

ER′n =
∑

1≤s≤n

∑
j>n−s

Eγs(aj) =
∑

1≤s≤n

∑
j>n−s

µ(aj)

≤ C
∑

1≤s≤n

∑
j>n−s

j−α = O(n2−α),

ER′′n =
∑
s≤0

∑
1≤k≤n

Eγs(ak−s) =
∑
s≤0

∑
1≤k≤n

µ(ak−s)

=
∑
s≥0

∑
1≤k≤n

1

(k + s)α
= O(n2−α),

implying (3.51) since 2− α < 1/α for 1 < α < 2. Theorem 2 is proved. �320

Example 8 (Jump processes satisfying the assumptions of Theorem 2). Note
that for a jump process in (3.36) we have (γ(u) = k) = (τk ≤ u < τk+1) since322

the sets on the r.h.s. of (3.36) are disjoint. Conditions in (3.37)-(3.40) on the
seed process {γ(u), u ≥ 0} in Theorem 2 are rather weak and essentially involve324

the distribution of the first jump-point τ1 provided the second jump τ2 cannot
occur very fast after τ1. Particularly,326

• The Bernoulli seed process of Example 4 can be written in the form (3.36),
where τ1 ∼ U [0, 1] is uniformly distributed and τk =∞, for k ≥ 2. In this328

case, (3.37) holds with θ(u) = 1(u ≤ 1) while (3.38)-(3.40) are trivially
satisfied by τ2 = ∞ a.s., which means that the sum (3.36) contains two330

terms only.
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• The binomial seed process b(u;n) =
∑n
j=1 1(Uj ≤ u) (see Example 4)

can be represented as (3.36) with τ1 = min{Uj : 1 ≤ j ≤ n} and τj is
the j-th order statistic of U1, . . . , Un, if 2 ≤ j ≤ n. Finally τn+1 = ∞.
Thus, the probability density of the joint distribution of (τj , 1 ≤ j ≤ n)
equals θ(u1, . . . , un) = n!du1 · · · dun1(0 < u1 < · · · < un < 1). Particu-
larly, θ(u) = P(τ1 ∈ du)/du = n(1 − u)n−1 satisfies limu→0 θ(u) = n, or
condition (3.37) with 1 replaced by n, while θ(u1, u2) = (1/2)n(n−1)(1−
u2)n−21(0 < u1 < u2 < 1). Since γ(u) = b(u;n) ≤ n, condition (3.38) is
trivially satisfied and (3.39) follows by Eγ(u)1(θ2 ≤ u) ≤ nP(θ2 ≤ u) ≤
(n/2)n(n − 1)

∫
0<u1<u2≤u du1du2 = (n/4)n(n − 1)u2 = O(u2). Relation

(3.40) follows similarly from

Eγ(v)1(τ1 ≤ u, τ2 ≤ v) ≤ nP(τ1 ≤ u, τ2 ≤ v)

≤ (n/2)n(n− 1)

∫
0<u1≤u,u1<u2≤v

du1du2

≤ (n/2)n(n− 1)uv = o(u), 0 < u < v → 0.

• The Poisson process γ(u) = P (u) of Example 3 can be written as (3.36)332

with i.i.d. τ1, τk−τk−1, k ≥ 2 distributed according to the exponential law
with density θ(u) = e−u, u > 0. In this case, (3.37) is satisfied and (3.39)334

holds since

EP (u)21(τ2 ≤ u) = EP (u)2 − P(P (u) = 1)

= u+ u2 − ue−u = O(u2). (3.52)

Condition (3.40) can be also directly verified for γ(u) = P (u) using prop-336

erties of Poisson process. The Poisson process is a particular case of gen-
eralized renewal process defined below.338

• A generalized renewal process is a jump process γ in (3.36) such that r.v.s
Uk = τk − τk−1, k ≥ 1 (intervals between successive jumps) are indepen-340

dent. Sufficient assumptions on the distribution of Uk, k ≥ 1 guaranteeing
(3.37)-(3.40) for such process are given in Proposition 5 below.342

• The mixed Poisson process γ(u) = P (ζu) of Example 3 also satisfies (3.37)-
(3.40) under mild conditions on the mixing r.v. ζ. See Proposition 6.344

Proposition 5. Let γ = {γ(u), u ≥ 0} in (3.36) be a generalized renewal process
such that the lengths Uk = τk − τk−1, k ≥ 1 between successive jumps of (3.36)346

have uniformly bounded probability densities, viz.,

P(Uk ≤ u) =

∫ u

0

θk(y)dy, k ≥ 1, with sup
k≥1,u≥0

θk(u) ≤ K <∞. (3.53)

Moreover, assume limu→0 θ1(u) = 1. Then γ satisfies conditions (3.37)-(3.40).348
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Proof. Condition (3.37) is obviously satisfied. Consider (3.38). We use the
representation350

γ(u) =

∞∑
k=1

1(τk ≤ u) =

∞∑
k=1

1(U1 + · · ·+ Uk ≤ u) (3.54)

see ([4], chapter 23, p. 307). Then by Minkowski’s inequality and (3.53), (3.54)
for any u ≥ 0 we obtain352

Eγ(u)2+δ ≤
( ∞∑
k=1

P(τk ≤ u)1/(2+δ)
)2+δ

=
( ∞∑
k=1

{∫
Rk+

1(z1 + · · ·+ zk ≤ u)
k∏
i=1

θi(zi)dzi

}1/(2+δ))2+δ
≤

( ∞∑
k=1

{
Kk

∫
Rk+

1(z1 + · · ·+ zk ≤ u)

k∏
i=1

dzi

}1/(2+δ))2+δ
=

( ∞∑
k=1

{Kkuk

k!

}1/(2+δ))2+δ
<∞

proving (3.38). Next, using 1(τj ≤ u)1(τk ≤ u) = 1(τk ≤ u), j ≤ k

Eγ(u)21(τ2 ≤ u) = E
( ∞∑
k=1

1(τk ≤ u)
)2
1(τ2 ≤ u)

= E
( ∞∑
k=1

k · 1(τk ≤ u)
)
1(τ2 ≤ u)

≤
∞∑
k=2

(k + 1)

∫
Rk+

1(z1 + · · ·+ zk ≤ u)

k∏
i=1

θi(zi)dzi

≤
∞∑
k=2

Kk(k + 1)

∫
Rk+

1(z1 + · · ·+ zk ≤ u)

k∏
i=1

dzi

=

∞∑
k=2

Kk(k + 1)uk

k!
= O(u2)

hence (3.39) holds. Finally, Eγ(v)1(τ1 ≤ u, τ2 ≤ v) = E
(∑∞

k=1 1(τk ≤ v)
)
1(τ1 ≤354

u, τ2 ≤ v) = P(τ1 ≤ u, τ2 ≤ v) +
∑∞
k=2 P(τk ≤ v, τ1 ≤ u, τ2 ≤ v), where
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P(τ1 ≤ u, τ2 ≤ v) = P(U1 ≤ u, U1 + U2 ≤ v) ≤ P(U1 ≤ u, U2 ≤ v) ≤ K2uv and356

∞∑
k=2

P(τk ≤ v, τ1 ≤ u, τ2 ≤ v) ≤
∞∑
k=2

P(τ1 ≤ u, τk − τ1 ≤ v)

= P(U1 ≤ u)

∞∑
k=2

P(U2 + · · ·+ Uk ≤ v)

≤ Ku

∞∑
k=1

Kk

∫
Rk+

1(z1 + · · ·+ zk ≤ v)

k∏
i=1

dzi

≤ Ku

∞∑
k=1

Kkvk

k!
≤ Cuv,

implying Eγ(v)1(τ1 ≤ u, τ2 ≤ v) ≤ Cuv = o(u) as 0 ≤ u ≤ v → 0, or (3.40). �

Proposition 6. Let γ = {P (ζu), u ≥ 0} be a mixed Poisson process of Example358

3, where ζ > 0 is independent of Poisson process P and satisfies Eζ = 1, and
Eζ2+δ <∞ for some δ > 0. Then γ satisfies conditions (3.37)-(3.40).360

Proof. Condition (3.37) follows from P(τ1 ≤ u) = E
∫ ζu
0

e−ydy ∼ Eζ = 1 (u →
0). To show (3.38) we need the bound EP (u)2+δ ≤ 5(u∨ u2+δ) (u > 0). To get362

it recall that E(P (u)− u)3 = u thus

EP (u)3 = u+ 3u2 + u3 ≤ 4(u+ u3), (3.55)

and Jensen inequality yields the result EP (u)2+δ ≤ 5
2+δ
3 u2+δ for u ≥ 1, and

if u ≤ 1 simply quote that, since the Poisson process admits integer values,
EP (u)2+δ ≤ EP (u)3 ≤ 5u. Whence, Eζ(u)2+δ ≤ CEζ2+δu2+δ < ∞ proving
(3.38). Similarly using (3.52) we get

Eζ(u)21(τ2 ≤ u) = u2Eζ2 + uE[ζ(1− e−ζu)] ≤ 2u2Eζ2 = O(u2) (u→ 0),

proving (3.39). To show (3.40) we use a suitable bound for Poisson process:364

EP (v)1(τ∗1 ≤ u, τ∗2 ≤ v) ≤ C
[
(u(1−e−u))2/3(v1/3+v)+uv

]
, 0 < u < v <∞

(3.56)
which is valid for all 0 < u < v <∞ and where τ∗j , j ≥ 1 are jump times of the

Poisson process P (u) =
∑∞
j=1 1(τ∗j ≤ u). Let q(u, v) denote the l.h.s. of (3.56),366

then q(u, v) = q1(u, v) + q2(u, v), with q1(u, v) = EP (v)1(τ∗2 ≤ u) ≤ P2/3(τ∗2 ≤
u)E1/3P (v)3, where P(τ∗2 ≤ u) = P(P (u) ≥ 2) = 1−e−u(1+u) ≤ u(1−e−u) and,368

from (3.55), EP (v)3 ≤ 4[v+v3]. Therefore, q1(u, v) does not exceed the r.h.s. of
(3.56). Next, since τ∗2 > u implies P (u) = 1 we obtain q2(u, v) = EP (v)1(τ∗1 ≤370

u, u < τ∗2 ≤ v) = P(τ∗1 ≤ u, u < τ∗2 ≤ v)+E(P (v)−P (u))1(P (u) = 1, P (v) ≥ 1),
where P(τ∗1 ≤ u, u < τ∗2 ≤ v) = P(P (u) = 1, P (v) − P (u) ≥ 1) = ue−u(1 −372

e−(v−u)) ≤ u(v − u) ≤ uv and similarly, E(P (v) − P (u))1(P (u) = 1, P (v) ≥
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1) = P(P (u) = 1)EP (v − u) = ue−u(v − u) ≤ uv, thus proving (3.56). With374

(3.56) in mind, we obtain

Eγ(v)1(τ1 ≤ u, τ2 ≤ v) = EP (ζv)1(τ∗1 ≤ ζu, τ∗2 ≤ ζv)

≤ CE
[
(ζu(1− e−ζu))2/3((ζv)1/3 + (ζv)) + ζ2uv

]
≤ C

{
E1/2[(ζu)4/3(1− e−ζu)4/3]E1/2[(ζv)2/3 + (ζv)2] + uvEζ2

}
≤ C

{
u2/3E1/2[ζ4/3(1− e−ζu)4/3](v1/3 + v) + uv

}
.

Hence, (3.40) follows if we show that Eζ2 <∞ implies376

E[ζ4/3(1− e−ζu)4/3] ≤ Cu2/3. (3.57)

To prove this recall that for v ≥ 0, 1 − e−v ≤ v ∧ 1, thus (1 − e−ζu)4/3 ≤
(ζu)2/312/3 and the inequality is proved with C = Eζ2. Proposition 6 is proved.378

�

3.3. Functional convergence in D[0, 1]380

Let us note that functional convergence in (3.45) is a delicate problem and
may not hold in the usual J1-topology. See [17], [26], [29], [24] on weak conver-382

gence in D[0, 1] with stable limits. In this subsection at the cost of additional
structure (association property) we prove the weak convergence of the partial384

sums process in (3.45) in Skorohod’s M1-topology (see [31] or [34]).
Recall that r.v.s V1, V2, . . . , Vm are said associated if386

Cov
(
f(V1, V2, . . . , Vm), g(V1, V2, . . . , Vm)

)
≥ 0

for all nondecreasing functions f and g for which the covariance exists. An
infinite family of r.v.s is associated if its every finite subfamily is associated.388

Association of r.v.s was introduced in Esary et al. [10] and we refer to this
paper for basic properties of this notion. We only recall the useful statements390

that independent r.v.s are associated and also the heredity of this notion through
non-decreasing functions.392

A simple application of these properties entails the following lemma.

Lemma 2. If the seed process {γ(u), u ∈ R} is associated, then the trawl process394

{Xk, k ∈ Z} in (1.1) is associated.

Theorem 3. Suppose that all the assumptions of Theorem 2 hold. In addition,396

if the jump times τ1, τ2, . . . are associated (e.g., if all τks are sums of independent
positive r.v.s) then {Xk} is associated and the finite-dimensional convergence398

(3.45) can be strengthened to

n−
1
α (S[nt] − ES[nt]) →D(M1) Lα(t), (3.58)

Proof. Since (3.58) follows from the association of {Xk} and a general result in400

Louichi and Rio ([24], Theorem 1), by Lemma 2 it suffices to verify that the seed
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γ = {γ(u), u ≥ 0} is associated, i.e. r.v.s γ(u1), γ(u2), . . . , γ(um) are associated402

for any m ≥ 1 and any 0 < u1 < · · · < um < ∞. Using the representation of
γ(u) in (3.54) and the arguments already presented above it is enough to prove404

the association of r.v.s

1(τ1 ≤ u1), 1(τ2 ≤ u1), · · · , 1(τk ≤ u1),
1(τ1 ≤ u2), 1(τ2 ≤ u2), · · · , 1(τk ≤ u2),

...
...

. . .
...

1(τ1 ≤ um), 1(τ2 ≤ um), · · · , 1(τk ≤ um),

(3.59)

for any k ≥ 1. Let us notice that 1(τj ≤ ui) = 1−1(τj > ui) and that functions406

x 7→ fi(x) = 1(x > ui), 1 ≤ i ≤ m are nondecreasing. Since association
is preserved by nondecreasing transformations, the association of {τ1, . . . , τm}408

implies the same property of {fi(τj), 1 ≤ i ≤ m, 1 ≤ j ≤ k}. By property BP1

of binary r.v.s in [10], {1 − fi(τj), 1 ≤ i ≤ m, 1 ≤ j ≤ k}, or array (3.59) is410

associated as well, ending the proof of Theorem 3. �

Remark 4. Association of γ or jump times {τj} can be easily verified in most412

examples considered in this paper. In particular,

• Poisson and generalized renewal processes (see Example 8) are associated414

since τk = U1 + · · ·+ Uk is a sum of independent r.v.s.

• For a mixed Poisson process with γ > 0 we have τk = (E1 + · · ·+ Ek)/ζ,416

where Ej , j ≥ 1 are independent exponentially distributed r.v.s. Thus,
{τj , j ≥ 1} is associated, the latter being nondecreasing transformations418

of independent r.v.s {1/ζ,Ej , j ≥ 0}. The above observation extends to
a general mixed Poisson process with γ ≥ 0.420

• Bernoulli seed in Example 4 is associated as it follows from the proof of
Theorem 3. The binomial seed of the same example is also associated, be-422

ing the sum of n independent associated processes, see ([10], Property P2).
Alternatively, association of the binomial seed can be established by show-424

ing that the order statistics are nondecreasing functions of (independent
uniformly distributed) sample variables.426

Remark 5. Theorem 2 and the subsequent discussion refers to trawl processes
with values in N corresponding to seed process with positive jumps, in which428

case the limit α-stable process is completely asymmetric. Clearly, this result
can be extended to some trawl processes with values in Z and a symmetric430

limit distribution. Particularly, if γ = γ+ − γ− is the difference of two inde-
pendent copies of jump processes of the form (3.36), the corresponding trawl432

process in (1.1) also writes as the difference Xk = X+
k −X

−
k of two independent

trawl processes with values in N and the limit distribution of Sn =

n∑
k=1

Xk can434

be symmetric α-stable. More generally, consider two families {γ+j }, {a
+
j } and

{γ−j }, {a
−
j } and the corresponding trawl processes {X+

k } and {X−k } and partial436
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sum processes S+
[nt] and S−[nt]. If the sequences {γ+j } and {γ−j } are mutually

independent and satisfy the conditions of Theorem 2, then the convergence438

n−
1
α (S+

[nt]−ES
+
[nt]) →f.d.d. L

+
α (t), n−

1
α (S−[nt]−ES

−
[nt]) →f.d.d. L

−
α (t), (3.60)

implies also

n−
1
α

((
S+
[nt] − S

−
[nt]

)
− E

(
S+
[nt] − S

−
[nt]

))
→f.d.d. Lα(t), (3.61)

where the α-stable Lévy process Lα has the same distribution as the difference440

L+
α − L−α of independent α-stable Lévy processes L+

α and L−α .

Remark 6. Suppose we are able to strengthen the convergence in (3.60) to442

the functional convergence in the M1 topology (e.g. by applying Theorem 3).
Then we cannot automatically replace (3.61) with the functional convergence444

in the M1 topology due to the lack of continuity of addition in M1 (see e.g.
[34]). However, the desired convergence can be achieved if we go deeper into446

the properties of M1. Lemma 3 seems to be known, but we could not find any
reference matching our framework. For the sake of completeness we decided to448

include the proof.

Lemma 3. Suppose that for each n, càdlàg processes Z ′n and Z ′′n are indepen-450

dent and, as n→∞,

Z ′n(t) →D(M1) L′(t), Z ′′n(t) →D(M1) L′′(t), (3.62)

where L′(t) and L′′(t) are homogeneous Lévy processes without Gaussian com-452

ponent. Then
Z ′n(t) + Z ′′n(t) →D(M1) L′0(t) + L′′0(t), (3.63)

where L′0(t) and L′′0(t) are independent copies of L′(t) and L′′(t), respectively.454

Proof. Passing to an a.s Skorokhod representation (see e.g. [9]) on the product
space456 (

D[0, 1],M1

)
×
(
D[0, 1],M1

)
,

we may and do assume that for each ω ∈ Ω

Z ′n(·, ω)→M1
L′0(·, ω), Z ′′n(·, ω)→M1

L′′0(·, ω),

with Z ′n and Z ′′n independent for n = 1, 2, . . ., and L′0 and L′′0 being independent458

copies of L′ and L′′. Here →M1
denotes the convergence in D[0, 1] equipped

with the M1 topology. We claim that it is enough to prove that almost surely460

Disc(L′0)
⋂

Disc(L′′0) = ∅, (3.64)

where for a càdlàg function x

Disc(x) =
{
t ∈ [0, 1] ; ∆xt = xt − xt− 6= 0

}
.

23



Indeed, we would have then by corollary 12.7.1 in [34] that almost surely462

Z ′n(·, ω) + Z ′′n(·, ω)→M1 L
′
0(·, ω) + L′′0(·, ω),

what implies (3.63) .
Relation (3.64) follows from ([6], Proposition 5.3) and the fact that the Lévy464

measure of (L′0, L
′′
0) is concentrated on the coordinate axes, since in this case

for almost all ω, the jumps satisfy466

∆L′0(·, ω)t ·∆L′′0(·, ω)t = 0, t ∈ [0, 1],

as desired. �

Corollary 1. Let {X+
k } and {X−k } be trawl processes built according to recipe468

(1.1), using systems {γ+j }, {a
+
j } and {γ−j }, {a

−
j }, respectively, and let S+

[nt] and

S−[nt] be the corresponding partial sum processes.470

Suppose that {γ+j } and {γ−j } are mutually independent and both satisfy the as-

sumptions of Theorem 3. Let L+
α and L−α be the limiting α-stable Lévy processes472

for n−
1
α (S+

[nt] − ES+
[nt]) and n−

1
α (S−[nt] − ES−[nt]), respectively. Then we have

n−
1
α

((
S+
[nt] − S

−
[nt]

)
− E

(
S+
[nt] − S

−
[nt]

))
→D(M1) Lα(t), (3.65)

where the α-stable Lévy process Lα has the same distribution as the difference474

L′α − L′′α of independent copies of L+
α and L−α .

Remark 7. The example of an ordinary moving average with summable co-476

efficients shows that (3.60) may imply (3.61) without the assumption of inde-
pendence of S+

[nt] and S−[nt] (see e.g. [1], corollary 2.2). In the functional limit478

result given below we follow this general approach and obtain the functional
convergence in the non-Skorohodian S topology (see [15]). We shall denote by480

→D(S) the convergence in distribution on the Skorohod space D[0, 1] equipped
with the S topology.482

Corollary 2. As in Corollary 1 we consider systems {γ+j }, {a
+
j }, {X

+
k }, {S

+
[nt]}

and {γ−j }, {a
−
j }, {X

−
k }, {S

−
[nt]}, each satisfying the conditions of Theorem 3, so484

that

n−
1
α (S+

[nt] − ES+
[nt]) →D(M1) L+

α (t),

n−
1
α (S−[nt] − ES−[nt]) →D(M1) L−α (t).

(3.66)

Allowing dependence between {γ+j } and {γ−j } we assume that for some càdlàg486

stochastic process K we have

n−
1
α

((
S+
[nt] − S

−
[nt]

)
− E

(
S+
[nt] − S

−
[nt]

))
→f.d.d. K(t). (3.67)

Then488

n−
1
α

((
S+
[nt] − S

−
[nt]

)
− E

(
S+
[nt] − S

−
[nt]

))
→D(S) K(t).
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Proof. Let us notice that the S topology is sequential, but non-metric, and
therefore standard (for the metric case) steps require some more subtle argu-490

ments. This is the reason why we provide exact reference to each step in the
proof.492

First, the topology M1 is stronger than S, hence (3.66) implies the uniform
S-tightness of the corresponding processes (for details see [1], theorem 3.13).494

By the sequential continuity of addition in the S topology, the differences
n−

1
α

(
(S+

[nt]−S
−
[nt])−(ES+

[nt]−ES−[nt])
)

are also uniformly S-tight (see [1], propo-496

sition 3.16).
Thus we have uniform S-tightness and finite dimensional convergence (3.67),498

which imply the functional convergence in S (see [1], proposition 3.3). �
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